結果
問題 |
No.2005 Sum of Power Sums
|
ユーザー |
![]() |
提出日時 | 2025-06-12 14:02:27 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 543 ms / 2,000 ms |
コード長 | 1,857 bytes |
コンパイル時間 | 537 ms |
コンパイル使用メモリ | 82,508 KB |
実行使用メモリ | 290,372 KB |
最終ジャッジ日時 | 2025-06-12 14:03:17 |
合計ジャッジ時間 | 12,292 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 18 |
ソースコード
MOD = 998244353 def main(): import sys input = sys.stdin.read().split() ptr = 0 N = int(input[ptr]) ptr += 1 M = int(input[ptr]) ptr += 1 K_list = list(map(int, input[ptr:ptr+N])) ptr += N max_k = 5000 # Precompute Stirling numbers of the second kind stirling = [[0] * (max_k + 1) for _ in range(max_k + 1)] stirling[0][0] = 1 for k in range(1, max_k + 1): for m in range(1, k + 1): stirling[k][m] = (m * stirling[k-1][m] + stirling[k-1][m-1]) % MOD # Precompute factorials and inverse factorials up to N + 5000 max_fact = N + 5000 fact = [1] * (max_fact + 1) for i in range(1, max_fact + 1): fact[i] = fact[i-1] * i % MOD inv_fact = [1] * (max_fact + 1) inv_fact[max_fact] = pow(fact[max_fact], MOD-2, MOD) for i in range(max_fact - 1, -1, -1): inv_fact[i] = inv_fact[i+1] * (i+1) % MOD # Compute M_mod M_mod = M % MOD # Precompute P(t) for t up to N + 5000 max_t = N + 5000 P = [1] * (max_t + 1) for t in range(1, max_t + 1): term = (M_mod + N - (t - 1)) % MOD P[t] = (P[t-1] * term) % MOD # Precompute C(t) for t up to N + 5000 C = [0] * (max_t + 1) for t in range(0, max_t + 1): C[t] = P[t] * inv_fact[t] % MOD # Precompute pre_sum for all K up to 5000 pre_sum = [0] * (max_k + 1) for K in range(0, max_k + 1): s = 0 for m in range(0, K + 1): s_km = stirling[K][m] if s_km == 0: continue term = s_km * fact[m] % MOD t = N + m c = C[t] s = (s + term * c) % MOD pre_sum[K] = s # Calculate the answer answer = 0 for K in K_list: answer = (answer + pre_sum[K]) % MOD print(answer) if __name__ == "__main__": main()