結果
問題 |
No.1211 円環はお断り
|
ユーザー |
![]() |
提出日時 | 2025-06-12 14:10:51 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 2,276 bytes |
コンパイル時間 | 211 ms |
コンパイル使用メモリ | 82,792 KB |
実行使用メモリ | 95,192 KB |
最終ジャッジ日時 | 2025-06-12 14:11:29 |
合計ジャッジ時間 | 4,923 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | -- * 2 |
other | AC * 13 TLE * 1 -- * 27 |
ソースコード
import bisect def main(): import sys input = sys.stdin.read().split() idx = 0 N = int(input[idx]) idx += 1 K = int(input[idx]) idx += 1 A = list(map(int, input[idx:idx+N])) idx += N if K == 0: print(0) return def is_possible(M): if M == 0: return True S = sum(A) if S < K * M: return False # Check linear split cnt = 0 current_sum = 0 for num in A: current_sum += num if current_sum >= M: cnt += 1 current_sum = 0 if cnt >= K: return True # Precompute prefix sums n = len(A) pre_sum = [0] * (n + 1) for i in range(n): pre_sum[i+1] = pre_sum[i] + A[i] # Precompute suffix sums suf_sum = [0] * (n + 1) for i in range(n-1, -1, -1): suf_sum[i] = suf_sum[i+1] + A[i] # Check each possible i for wrapping around for i in range(n): s = suf_sum[i] need = M - s if need <= 0: # j is -1, start=0, end=i-1 start = 0 end = i - 1 else: # Find smallest j where pre_sum[j+1] >= need j_plus_1 = bisect.bisect_left(pre_sum, need) if j_plus_1 > n: continue # no such j start = j_plus_1 end = i - 1 if start > end: continue # no elements in the remaining part # Calculate how many splits in [start, end] current = 0 current_sum = 0 for k in range(start, end + 1): current_sum += A[k] if current_sum >= M: current += 1 current_sum = 0 if current >= K - 1: return True return False # Binary search left = 0 right = sum(A) // K answer = 0 while left <= right: mid = (left + right) // 2 if is_possible(mid): answer = mid left = mid + 1 else: right = mid - 1 print(answer) if __name__ == '__main__': main()