結果
| 問題 | No.1786 Maximum Suffix Median (Online) | 
| コンテスト | |
| ユーザー |  gew1fw | 
| 提出日時 | 2025-06-12 14:14:19 | 
| 言語 | PyPy3 (7.3.15) | 
| 結果 | 
                                TLE
                                 
                             | 
| 実行時間 | - | 
| コード長 | 1,269 bytes | 
| コンパイル時間 | 197 ms | 
| コンパイル使用メモリ | 82,432 KB | 
| 実行使用メモリ | 66,048 KB | 
| 最終ジャッジ日時 | 2025-06-12 14:14:26 | 
| 合計ジャッジ時間 | 5,847 ms | 
| ジャッジサーバーID (参考情報) | judge1 / judge4 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 5 TLE * 1 -- * 24 | 
ソースコード
import bisect
def main():
    import sys
    input = sys.stdin.read
    data = input().split()
    N = int(data[0])
    A_prime = list(map(int, data[1:N+1]))
    
    ans = []
    A = []
    for i in range(N):
        if i == 0:
            a = A_prime[i]
        else:
            a = A_prime[i] ^ ans[-1]
        A.append(a)
        # Now compute ans[i]
        current_list = []
        max_median = a
        current_list.append(a)
        # Iterate backward from i-1 to 0, but keep current_list sorted
        for j in range(i-1, -1, -1):
            bisect.insort(current_list, A[j])
            m = len(current_list)
            k = (m + 1) // 2
            median = current_list[k-1]
            if median > max_median:
                max_median = median
            else:
                # Since the list is being built by adding elements from left (earlier elements),
                # adding more elements to the left (which are possibly smaller) may not help.
                # So we can break early if the median starts decreasing.
                # This is a heuristic and may not always work, but helps in some cases.
                pass
        ans.append(max_median)
    
    for num in ans:
        print(num)
if __name__ == "__main__":
    main()
            
            
            
        