結果
問題 |
No.2337 Equidistant
|
ユーザー |
![]() |
提出日時 | 2025-06-12 14:33:38 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 2,363 bytes |
コンパイル時間 | 323 ms |
コンパイル使用メモリ | 82,696 KB |
実行使用メモリ | 183,964 KB |
最終ジャッジ日時 | 2025-06-12 14:34:16 |
合計ジャッジ時間 | 18,383 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 3 WA * 25 |
ソースコード
import sys from collections import deque def main(): sys.setrecursionlimit(1 << 25) input = sys.stdin.read data = input().split() idx = 0 N = int(data[idx]) idx += 1 Q = int(data[idx]) idx += 1 edges = [[] for _ in range(N+1)] for _ in range(N-1): a = int(data[idx]) idx += 1 b = int(data[idx]) idx += 1 edges[a].append(b) edges[b].append(a) # Precompute distance from all nodes to all others is O(N^2), which is impossible for N=2e5. # Instead, for each query, compute distance between S and T using BFS. # But for 2e5 queries, each O(N), it's 4e10 operations, which is way too slow. # So, we need a better way: for each query, compute distance between S and T using BFS, but optimized. # Wait, perhaps we can compute distance using LCA with binary lifting. # So, first, compute parent, depth, and binary lifting table for LCA. # Compute parent and depth for each node using BFS parent = [0]*(N+1) depth = [0]*(N+1) visited = [False]*(N+1) q = deque() q.append(1) visited[1] = True while q: u = q.popleft() for v in edges[u]: if not visited[v]: visited[v] = True parent[v] = u depth[v] = depth[u] + 1 q.append(v) # Now, compute binary lifting table for LCA LOG = 20 up = [[0]*(N+1) for _ in range(LOG)] up[0] = parent for k in range(1, LOG): for v in range(1, N+1): up[k][v] = up[k-1][up[k-1][v]] def lca(u, v): if depth[u] < depth[v]: u, v = v, u # Bring u to the same depth as v for k in range(LOG-1, -1, -1): if depth[u] - (1 << k) >= depth[v]: u = up[k][u] if u == v: return u for k in range(LOG-1, -1, -1): if up[k][u] != up[k][v]: u = up[k][u] v = up[k][v] return parent[u] def distance(u, v): a = lca(u, v) return depth[u] + depth[v] - 2 * depth[a] for _ in range(Q): S = int(data[idx]) idx +=1 T = int(data[idx]) idx +=1 d = distance(S, T) if d % 2 == 0: print(1) else: print(0) if __name__ == "__main__": main()