結果
| 問題 | No.681 Fractal Gravity Glue | 
| コンテスト | |
| ユーザー |  gew1fw | 
| 提出日時 | 2025-06-12 14:45:43 | 
| 言語 | PyPy3 (7.3.15) | 
| 結果 | 
                                MLE
                                 
                             | 
| 実行時間 | - | 
| コード長 | 2,228 bytes | 
| コンパイル時間 | 334 ms | 
| コンパイル使用メモリ | 82,372 KB | 
| 実行使用メモリ | 849,548 KB | 
| 最終ジャッジ日時 | 2025-06-12 14:47:30 | 
| 合計ジャッジ時間 | 5,711 ms | 
| ジャッジサーバーID (参考情報) | judge4 / judge1 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| other | AC * 8 MLE * 1 -- * 11 | 
ソースコード
import sys
MOD = 10**9 + 7
def main():
    sys.setrecursionlimit(1 << 25)
    n = int(sys.stdin.readline().strip())
    b_d = sys.stdin.readline().strip().split()
    b = int(b_d[0])
    d = int(b_d[1])
    if b == 0:
        print(0)
        return
    # Compute S_total = S(b, d)
    def compute_S(b, d):
        if b == 1:
            return d % MOD
        h = pow(d + 1, b, MOD)
        h = (h - 1) % MOD
        term1 = ( (d + 1) % MOD ) * h % MOD
        inv_d = pow(d, MOD - 2, MOD)
        term1 = term1 * inv_d % MOD
        term2 = (b) % MOD
        S = (term1 - term2) % MOD
        return S
    S_total = compute_S(b, d)
    # Compute sum(n, b, d)
    from functools import lru_cache
    import math
    @lru_cache(maxsize=None)
    def sum_layers(n, b, d):
        if b == 1:
            return min(n, d) % MOD
        if d == 0:
            return 0
        # Check if h = (d+1)^(b-1) -1 > n
        # Compute (d+1)^(b-1) > n+1
        if d + 1 == 1:
            h = 0
        else:
            log_d_plus_1 = math.log(d + 1)
            log_n_plus_1 = math.log(n + 1)
            if (b - 1) * log_d_plus_1 > log_n_plus_1 + 1e-12:
                return sum_layers(n, b - 1, d)
        # Else, compute h = (d+1)^(b-1) -1
        h = pow(d + 1, b - 1, MOD)
        h = (h - 1) % MOD
        # Compute k = min(d, n // (h+1))
        k = n // (h + 1)
        if k > d:
            k = d
        rem = n - k * (h + 1)
        # Compute S(b-1, d)
        h_b_minus_1 = pow(d + 1, b - 1, MOD)
        h_b_minus_1 = (h_b_minus_1 - 1) % MOD
        term1 = ( (d + 1) % MOD ) * h_b_minus_1 % MOD
        inv_d = pow(d, MOD - 2, MOD)
        term1 = term1 * inv_d % MOD
        term2 = (b - 1) % MOD
        S_b_minus_1_d = (term1 - term2) % MOD
        sum_total = (k * ( (S_b_minus_1_d + b) % MOD )) % MOD
        if rem > 0:
            if k < d:
                sum_rem = sum_layers(rem, b - 1, d)
            else:
                sum_rem = sum_layers(rem, b - 1, d)
            sum_total = (sum_total + sum_rem) % MOD
        return sum_total % MOD
    sum_n = sum_layers(n, b, d) % MOD
    # Compute result
    result = (S_total - sum_n) % MOD
    print(result)
if __name__ == "__main__":
    main()
            
            
            
        