結果
問題 |
No.2119 一般化百五減算
|
ユーザー |
![]() |
提出日時 | 2025-06-12 14:56:20 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 1,214 bytes |
コンパイル時間 | 179 ms |
コンパイル使用メモリ | 82,304 KB |
実行使用メモリ | 107,520 KB |
最終ジャッジ日時 | 2025-06-12 14:58:28 |
合計ジャッジ時間 | 4,841 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 20 TLE * 1 -- * 4 |
ソースコード
import sys import math def extended_gcd(a, b): if b == 0: return (a, 1, 0) else: g, x, y = extended_gcd(b, a % b) return (g, y, x - (a // b) * y) def modinv(a, m): g, x, y = extended_gcd(a, m) if g != 1: return None # inverse doesn't exist else: return x % m def main(): import sys input = sys.stdin.read().split() ptr = 0 N = int(input[ptr]) ptr += 1 M = int(input[ptr]) ptr += 1 B = [] C = [] for _ in range(M): b = int(input[ptr]) c = int(input[ptr+1]) B.append(b) C.append(c) ptr += 2 a = 0 mod = 1 for m in range(M): Bm = B[m] Cm = C[m] a2 = Cm % Bm d = math.gcd(mod, Bm) if (a2 - a) % d != 0: print("NaN") return m1d = mod // d m2d = Bm // d inv = modinv(m1d, m2d) numerator = (a2 - a) // d k0 = (inv * numerator) % m2d x = a + k0 * mod new_mod = mod * Bm // d new_a = x % new_mod a, mod = new_a, new_mod if a <= N: print(a) else: print("NaN") if __name__ == '__main__': main()