結果
| 問題 |
No.2959 Dolls' Tea Party
|
| コンテスト | |
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 15:42:38 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 2,244 bytes |
| コンパイル時間 | 184 ms |
| コンパイル使用メモリ | 82,772 KB |
| 実行使用メモリ | 130,376 KB |
| 最終ジャッジ日時 | 2025-06-12 15:42:48 |
| 合計ジャッジ時間 | 6,181 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 2 TLE * 1 -- * 30 |
ソースコード
import sys
MOD = 998244353
def main():
import sys
sys.setrecursionlimit(1 << 25)
N, K = map(int, sys.stdin.readline().split())
A = list(map(int, sys.stdin.readline().split()))
# Precompute factorials and inverse factorials modulo MOD up to K
max_m = K
fact = [1] * (max_m + 1)
for i in range(1, max_m + 1):
fact[i] = fact[i-1] * i % MOD
inv_fact = [1] * (max_m + 1)
inv_fact[max_m] = pow(fact[max_m], MOD-2, MOD)
for i in range(max_m-1, -1, -1):
inv_fact[i] = inv_fact[i+1] * (i+1) % MOD
# Function to find all divisors of K
def get_divisors(k):
divisors = set()
for i in range(1, int(k**0.5) + 1):
if k % i == 0:
divisors.add(i)
divisors.add(k//i)
return sorted(divisors)
divisors = get_divisors(K)
# Precompute Euler's Totient function for each divisor
from math import gcd
def compute_phi(n):
result = n
i = 2
while i*i <= n:
if n % i == 0:
while n % i == 0:
n //= i
result -= result // i
i += 1
if n > 1:
result -= result // n
return result
phi = {}
for d in divisors:
phi[d] = compute_phi(d)
total = 0
for d in divisors:
m = K // d
# Compute c_i = min(A_i // d, m)
c = [min(a // d, m) for a in A]
# Initialize dp
dp = [0] * (m + 1)
dp[0] = 1
for ci in c:
if ci == 0:
continue
# Create the generating function for this color
s = [inv_fact[x] for x in range(ci + 1)]
new_dp = [0] * (m + 1)
for j in range(m + 1):
for x in range(min(ci, j) + 1):
new_dp[j] = (new_dp[j] + dp[j - x] * s[x]) % MOD
dp = new_dp
# Compute the contribution for this d
coeff = dp[m] % MOD
ways = coeff * fact[m] % MOD
ways = ways * phi[d] % MOD
total = (total + ways) % MOD
# The final answer is total / K mod MOD
inv_K = pow(K, MOD-2, MOD)
ans = total * inv_K % MOD
print(ans)
if __name__ == '__main__':
main()
gew1fw