結果
| 問題 | No.1301 Strange Graph Shortest Path | 
| コンテスト | |
| ユーザー |  gew1fw | 
| 提出日時 | 2025-06-12 16:13:21 | 
| 言語 | PyPy3 (7.3.15) | 
| 結果 | 
                                WA
                                 
                             | 
| 実行時間 | - | 
| コード長 | 2,532 bytes | 
| コンパイル時間 | 350 ms | 
| コンパイル使用メモリ | 82,348 KB | 
| 実行使用メモリ | 163,312 KB | 
| 最終ジャッジ日時 | 2025-06-12 16:13:50 | 
| 合計ジャッジ時間 | 25,973 ms | 
| ジャッジサーバーID (参考情報) | judge3 / judge5 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 2 | 
| other | AC * 27 WA * 4 TLE * 1 -- * 1 | 
ソースコード
import sys
import heapq
def main():
    input = sys.stdin.read().split()
    idx = 0
    N = int(input[idx])
    idx += 1
    M = int(input[idx])
    idx += 1
    edges = []
    adj = [[] for _ in range(N+1)]
    for _ in range(M):
        u = int(input[idx])
        idx += 1
        v = int(input[idx])
        idx += 1
        c = int(input[idx])
        idx += 1
        d = int(input[idx])
        idx += 1
        edges.append((u, v, c, d))
        adj[u].append((v, c, d))
        adj[v].append((u, c, d))
    # Step 1: Find the minimal 1->N path
    def dijkstra(start, end, adj):
        dist = [float('inf')] * (N+1)
        dist[start] = 0
        heap = [(0, start)]
        parent = [-1] * (N+1)
        visited = [False] * (N+1)
        while heap:
            current_dist, u = heapq.heappop(heap)
            if visited[u]:
                continue
            visited[u] = True
            if u == end:
                break
            for v, c, d in adj[u]:
                if not visited[v] and dist[v] > current_dist + c:
                    dist[v] = current_dist + c
                    heapq.heappush(heap, (dist[v], v))
                    parent[v] = u
        path = []
        u = end
        while u != start:
            prev = parent[u]
            if prev == -1:
                break
            path.append((prev, u))
            u = prev
        path.reverse()
        return dist[end], path
    min_dist_1n, path_1n_edges = dijkstra(1, N, adj)
    if min_dist_1n == float('inf'):
        print(-1)
        return
    # Extract the edges used in the path
    edge_set = set()
    for u, v in path_1n_edges:
        for e in edges:
            a, b, _, _ = e
            if (a == u and b == v) or (a == v and b == u):
                edge_set.add((u, v, e[2], e[3]))
                break
    # Build the modified adjacency list for the return path
    modified_adj = [[] for _ in range(N+1)]
    for e in edges:
        u, v, c, d = e
        if (u, v, c, d) in edge_set or (v, u, c, d) in edge_set:
            modified_adj[u].append((v, d, c))
            modified_adj[v].append((u, d, c))
        else:
            modified_adj[u].append((v, c, d))
            modified_adj[v].append((u, c, d))
    # Run Dijkstra again for the return path from N to 1 with modified edges
    min_dist_n1, _ = dijkstra(N, 1, modified_adj)
    if min_dist_n1 == float('inf'):
        print(-1)
        return
    total = min_dist_1n + min_dist_n1
    print(total)
if __name__ == '__main__':
    main()
            
            
            
        