結果
| 問題 |
No.577 Prime Powerful Numbers
|
| コンテスト | |
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 16:25:47 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 2,857 bytes |
| コンパイル時間 | 233 ms |
| コンパイル使用メモリ | 82,180 KB |
| 実行使用メモリ | 151,948 KB |
| 最終ジャッジ日時 | 2025-06-12 16:26:28 |
| 合計ジャッジ時間 | 6,608 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 1 |
| other | TLE * 1 -- * 9 |
ソースコード
import math
import sys
def is_prime(n):
if n <= 1:
return False
elif n <= 3:
return True
elif n % 2 == 0:
return False
d = n - 1
s = 0
while d % 2 == 0:
d //= 2
s += 1
bases = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
for a in bases:
if a >= n:
continue
x = pow(a, d, n)
if x == 1 or x == n - 1:
continue
for _ in range(s - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
def kth_root(s, k):
if s < 0:
return -1
low = 0
high = s
while low <= high:
mid = (low + high) // 2
power = 1
overflow = False
for _ in range(k):
power *= mid
if power > s:
overflow = True
break
if overflow:
high = mid - 1
elif power == s:
return mid
elif power < s:
low = mid + 1
else:
high = mid - 1
return -1
def is_prime_power(s):
if s < 2:
return False
if is_prime(s):
return True
max_k = int(math.log2(s)) + 1
for k in range(2, max_k + 1):
t = kth_root(s, k)
if t != -1 and is_prime(t):
return True
return False
def sieve(n):
if n < 2:
return []
sieve = [True] * (n + 1)
sieve[0] = sieve[1] = False
for i in range(2, int(math.sqrt(n)) + 1):
if sieve[i]:
sieve[i*i : n+1 : i] = [False] * len(sieve[i*i : n+1 : i])
primes = [i for i, is_p in enumerate(sieve) if is_p]
return primes
def main():
input = sys.stdin.read().split()
Q = int(input[0])
for i in range(1, Q + 1):
N = int(input[i])
if N >= 4 and is_prime(N - 2):
print("Yes")
continue
found = False
for a in range(2, 61):
max_p = int(N ** (1.0 / a)) + 1
primes = sieve(max_p)
for p in primes:
pa = p ** a
if pa >= N:
continue
s = N - pa
if is_prime_power(s):
found = True
break
if found:
break
if not found:
for b in range(2, 61):
max_q = int(N ** (1.0 / b)) + 1
primes = sieve(max_q)
for q in primes:
qb = q ** b
if qb >= N:
continue
s = N - qb
if is_prime(s):
found = True
break
if found:
break
print("Yes" if found else "No")
if __name__ == "__main__":
main()
gew1fw