結果
問題 | No.1653 Squarefree |
ユーザー |
![]() |
提出日時 | 2025-06-12 16:49:06 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 3,026 bytes |
コンパイル時間 | 353 ms |
コンパイル使用メモリ | 82,244 KB |
実行使用メモリ | 105,228 KB |
最終ジャッジ日時 | 2025-06-12 16:50:12 |
合計ジャッジ時間 | 6,777 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | -- * 3 |
other | TLE * 1 -- * 37 |
ソースコード
import sys import math import random def is_prime(n): if n < 2: return False for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if n % p == 0: return n == p d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for a in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True def pollards_rho(n): if n % 2 == 0: return 2 if n % 3 == 0: return 3 if n % 5 == 0: return 5 while True: c = random.randint(1, n-1) f = lambda x: (pow(x, 2, n) + c) % n x, y, d = 2, 2, 1 while d == 1: x = f(x) y = f(f(y)) d = math.gcd(abs(x - y), n) if d != n: return d def factorize(n): factors = [] def _factor(n): if n == 1: return if is_prime(n): factors.append(n) return d = pollards_rho(n) _factor(d) _factor(n // d) _factor(n) return factors def main(): L, R = map(int, sys.stdin.readline().split()) # Precompute small primes up to 1e6 using sieve sieve_limit = 10**6 sieve = [True] * (sieve_limit + 1) sieve[0] = sieve[1] = False for i in range(2, int(math.sqrt(sieve_limit)) + 1): if sieve[i]: for j in range(i*i, sieve_limit + 1, i): sieve[j] = False small_primes = [i for i, is_p in enumerate(sieve) if is_p] count = 0 for n in range(L, R + 1): if n == 1: count += 1 continue temp = n square_free = True # Check small primes for p in small_primes: if p * p > temp: break if temp % p == 0: if (temp // p) % p == 0: square_free = False break while temp % p == 0: temp = temp // p if not square_free: continue if temp == 1: count += 1 continue # Check if temp is a perfect square s = int(math.isqrt(temp)) if s * s == temp: square_free = False else: # Check if temp is a prime if is_prime(temp): if n % (temp * temp) == 0: square_free = False else: # Factor the remaining part factors = factorize(temp) for p in factors: if n % (p * p) == 0: square_free = False break if square_free: count += 1 print(count) if __name__ == "__main__": main()