結果
| 問題 | No.2258 The Jikka Tree | 
| ユーザー |  gew1fw | 
| 提出日時 | 2025-06-12 17:12:19 | 
| 言語 | PyPy3 (7.3.15) | 
| 結果 | 
                                WA
                                 
                             | 
| 実行時間 | - | 
| コード長 | 3,239 bytes | 
| コンパイル時間 | 228 ms | 
| コンパイル使用メモリ | 82,304 KB | 
| 実行使用メモリ | 86,008 KB | 
| 最終ジャッジ日時 | 2025-06-12 17:12:29 | 
| 合計ジャッジ時間 | 10,089 ms | 
| ジャッジサーバーID (参考情報) | judge4 / judge2 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 1 | 
| other | AC * 2 WA * 1 TLE * 1 -- * 71 | 
ソースコード
import sys
import bisect
sys.setrecursionlimit(1 << 25)
def main():
    input = sys.stdin.read
    data = input().split()
    ptr = 0
    N = int(data[ptr])
    ptr += 1
    # Read edges
    edges = [[] for _ in range(N)]
    for _ in range(N-1):
        u = int(data[ptr])
        v = int(data[ptr+1])
        ptr += 2
        edges[u].append(v)
        edges[v].append(u)
    # Compute in_order and out_order via DFS
    in_order = [0] * N
    out_order = [0] * N
    time = 0
    visited = [False] * N
    def dfs(u, parent):
        nonlocal time
        in_order[u] = time
        time += 1
        for v in edges[u]:
            if v != parent and not visited[v]:
                visited[v] = True
                dfs(v, u)
        out_order[u] = time - 1
    visited[0] = True
    dfs(0, -1)
    # Read A array
    A = list(map(int, data[ptr:ptr+N]))
    ptr += N
    # Prefix sum of A
    prefix = [0] * (N + 1)
    for i in range(N):
        prefix[i+1] = prefix[i] + A[i]
    # Read Q
    Q = int(data[ptr])
    ptr += 1
    queries = []
    for _ in range(Q):
        a_prime = int(data[ptr])
        b_prime = int(data[ptr+1])
        k_prime = int(data[ptr+2])
        delta = int(data[ptr+3])
        ptr += 4
        queries.append((a_prime, b_prime, k_prime, delta))
    # Process each query
    X = []
    sum_X = 0
    for i in range(Q):
        a_prime, b_prime, k_prime, delta = queries[i]
        # Compute a, b, k
        if i == 0:
            a = a_prime
            b = b_prime
            k = k_prime
        else:
            a = (a_prime + sum_X) % N
            b = (b_prime + 2 * sum_X) % N
            k = (k_prime + (sum_X ** 2)) % 150001
        # Compute l and r
        l = min(a, b)
        r = max(a, b) + 1
        # Compute T
        T = (prefix[r] - prefix[l]) + k * (r - l)
        # Function to count nodes in [l, r) with in_order in [a, b]
        def count(l, r, a, b):
            count = 0
            for w in range(l, r):
                if in_order[w] >= a and in_order[w] <= b:
                    count += 1
            return count
        # Function to sum A_w for nodes in [l, r) with in_order in [a, b]
        def sum_A(l, r, a, b):
            s = 0
            for w in range(l, r):
                if in_order[w] >= a and in_order[w] <= b:
                    s += A[w]
            return s
        # Find the optimal node v
        current_v = 0
        while True:
            max_sum = 0
            best_child = -1
            for v in edges[current_v]:
                if in_order[v] < in_order[current_v]:
                    # This is the parent, skip
                    continue
                # Compute sum for subtree of v
                cnt = count(l, r, in_order[v], out_order[v])
                s = sum_A(l, r, in_order[v], out_order[v])
                sum_u = cnt * k + s
                if sum_u > max_sum:
                    max_sum = sum_u
                    best_child = v
            if max_sum > T / 2:
                current_v = best_child
            else:
                break
        X.append(current_v)
        sum_X += current_v
    # Output the results
    for x in X:
        print(x)
if __name__ == '__main__':
    main()
            
            
            
        