結果
| 問題 |
No.2258 The Jikka Tree
|
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 17:12:46 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,447 bytes |
| コンパイル時間 | 211 ms |
| コンパイル使用メモリ | 82,764 KB |
| 実行使用メモリ | 90,972 KB |
| 最終ジャッジ日時 | 2025-06-12 17:13:07 |
| 合計ジャッジ時間 | 20,063 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 7 WA * 12 TLE * 1 -- * 55 |
ソースコード
import sys
sys.setrecursionlimit(1 << 25)
def main():
import sys
input = sys.stdin.read
data = input().split()
ptr = 0
N = int(data[ptr])
ptr +=1
edges = [[] for _ in range(N)]
for _ in range(N-1):
u = int(data[ptr])
v = int(data[ptr+1])
ptr +=2
edges[u].append(v)
edges[v].append(u)
A = list(map(int, data[ptr:ptr+N]))
ptr += N
Q = int(data[ptr])
ptr +=1
queries = []
for _ in range(Q):
a_prime = int(data[ptr])
b_prime = int(data[ptr+1])
k_prime = int(data[ptr+2])
delta = int(data[ptr+3])
ptr +=4
queries.append( (a_prime, b_prime, k_prime, delta) )
# Precompute Euler Tour and depth, parent
parent = [0]*N
depth = [0]*N
entry = [0]*N
exit_ = [0]*N
time = 0
visited = [False]*N
def dfs(u, p):
nonlocal time
visited[u] = True
parent[u] = p
entry[u] = time
time +=1
for v in edges[u]:
if not visited[v]:
depth[v] = depth[u] +1
dfs(v, u)
exit_[u] = time -1
dfs(0, -1)
# Build a segment tree for the Euler Tour
class SegmentTree:
def __init__(self, size):
self.n = 1
while self.n < size:
self.n <<=1
self.size = size
self.tree = [0]*(2*self.n)
def update(self, pos, val):
pos += self.n
self.tree[pos] = val
while pos >1:
pos >>=1
self.tree[pos] = self.tree[2*pos] + self.tree[2*pos+1]
def query(self, l, r):
res =0
l += self.n
r += self.n
while l <= r:
if l %2 ==1:
res += self.tree[l]
l +=1
if r %2 ==0:
res += self.tree[r]
r -=1
l >>=1
r >>=1
return res
# Prepare for each query
X = []
sum_X = 0
for q in range(Q):
a_prime, b_prime, k_prime, delta = queries[q]
if q ==0:
a = a_prime
b = b_prime
k = k_prime
else:
a = (a_prime + sum_X) % N
b = (b_prime + 2*sum_X) % N
k = (k_prime + (sum_X)**2) % 150001
l = min(a, b)
r = max(a, b) +1
T = 0
sum_A_plus_k = 0
st = SegmentTree(N)
for w in range(l, r):
c = A[w] + k
T += c
st.update(entry[w], c)
# Now find the weighted median
def find_median(v):
total = T
visited = {}
stack = [v]
while stack:
u = stack.pop()
if u in visited:
continue
visited[u] = True
max_sub = 0
for child in edges[u]:
if child == parent[u]:
continue
s = st.query(entry[child], exit_[child])
if s > T/2:
stack.append(child)
break
else:
return u
return v
v = find_median(0)
X.append(v)
sum_X += v
for x in X:
print(x)
if __name__ == '__main__':
main()
gew1fw