結果
| 問題 | No.2207 pCr検査 | 
| コンテスト | |
| ユーザー |  gew1fw | 
| 提出日時 | 2025-06-12 18:02:38 | 
| 言語 | PyPy3 (7.3.15) | 
| 結果 | 
                                TLE
                                 
                             | 
| 実行時間 | - | 
| コード長 | 2,728 bytes | 
| コンパイル時間 | 201 ms | 
| コンパイル使用メモリ | 82,560 KB | 
| 実行使用メモリ | 456,192 KB | 
| 最終ジャッジ日時 | 2025-06-12 18:02:46 | 
| 合計ジャッジ時間 | 6,505 ms | 
| ジャッジサーバーID (参考情報) | judge1 / judge5 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 2 | 
| other | TLE * 1 -- * 29 | 
ソースコード
import sys
from collections import defaultdict
# Precompute smallest prime factors up to 1e7
max_sieve = 10**7
spf = list(range(max_sieve + 1))
for i in range(2, int(max_sieve**0.5) + 1):
    if spf[i] == i:
        for j in range(i * i, max_sieve + 1, i):
            if spf[j] == j:
                spf[j] = i
# Read input
k = int(sys.stdin.readline())
factors = defaultdict(int)
for _ in range(k):
    p, e = map(int, sys.stdin.readline().split())
    factors[p] = e
# Check if N is a prime (k=1 and e=1)
if len(factors) == 1:
    primes = list(factors.keys())
    exponents = list(factors.values())
    if exponents[0] == 1:
        print(primes[0], 1)
        sys.exit()
# Collect candidates p with exponent 1
candidates = [p for p in factors if factors[p] == 1]
for p in candidates:
    # Compute M's factors (N / p)
    m_factors = defaultdict(int)
    for prime in factors:
        if prime == p:
            continue
        m_factors[prime] = factors[prime]
    
    # Iterate r from 2 to 60
    for r in range(2, 61):
        if r > p:
            continue
        
        # Generate terms p-1, p-2, ..., p - (r-1)
        terms = []
        valid = True
        for k in range(1, r):
            term = p - k
            if term <= 0:
                valid = False
                break
            terms.append(term)
        if not valid:
            continue
        
        # Factorize each term and accumulate product_factors
        product_factors = defaultdict(int)
        for term in terms:
            if term == 1:
                continue
            x = term
            while x != 1:
                prime = spf[x]
                count = 0
                while x % prime == 0:
                    count += 1
                    x = x // prime
                product_factors[prime] += count
        
        # Compute r! factors using Legendre's formula
        r_fact_factors = defaultdict(int)
        primes_in_r = []
        for q in range(2, r + 1):
            if spf[q] == q:
                primes_in_r.append(q)
        for q in primes_in_r:
            e = 0
            current = q
            while current <= r:
                e += r // current
                current *= q
            if e > 0:
                r_fact_factors[q] = e
        
        # Merge r! factors and M's factors
        merged_factors = defaultdict(int)
        for q in r_fact_factors:
            merged_factors[q] += r_fact_factors[q]
        for q in m_factors:
            merged_factors[q] += m_factors[q]
        
        # Compare product_factors and merged_factors
        if product_factors == merged_factors:
            print(p, r)
            sys.exit()
# If no solution found
print(-1, -1)
            
            
            
        