結果
問題 |
No.2062 Sum of Subset mod 999630629
|
ユーザー |
![]() |
提出日時 | 2025-06-12 18:05:22 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 1,235 bytes |
コンパイル時間 | 185 ms |
コンパイル使用メモリ | 82,740 KB |
実行使用メモリ | 83,348 KB |
最終ジャッジ日時 | 2025-06-12 18:06:59 |
合計ジャッジ時間 | 3,142 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 21 WA * 8 |
ソースコード
MOD = 998244353 m = 999630629 def main(): import sys input = sys.stdin.read().split() N = int(input[0]) A = list(map(int, input[1:N+1])) sum_A = sum(A) if sum_A < m: ans = sum_A * pow(2, N-1, MOD) % MOD print(ans) return # Precompute factorial and inverse factorial modulo MOD up to max_n = N max_n = N fact = [1] * (max_n + 1) for i in range(1, max_n + 1): fact[i] = fact[i-1] * i % MOD inv_fact = [1] * (max_n + 1) inv_fact[max_n] = pow(fact[max_n], MOD-2, MOD) for i in range(max_n-1, -1, -1): inv_fact[i] = inv_fact[i+1] * (i+1) % MOD def comb(n, k): if k < 0 or k > n: return 0 return fact[n] * inv_fact[k] % MOD * inv_fact[n - k] % MOD max_t = (sum_A - m) // 10**4 # 36 when sum_A=1e9, m=999630629 max_t = min(max_t, 36) C = 0 for t in range(0, max_t + 1): c = comb(N, t) C = (C + c) % MOD term1 = sum_A % MOD term1 = term1 * pow(2, N-1, MOD) % MOD term2 = m % MOD term2 = term2 * C % MOD ans = (term1 - term2) % MOD ans = (ans + MOD) % MOD # Ensure non-negative print(ans) if __name__ == '__main__': main()