結果
問題 |
No.2243 Coaching Schedule
|
ユーザー |
![]() |
提出日時 | 2025-06-12 18:33:23 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 2,160 bytes |
コンパイル時間 | 253 ms |
コンパイル使用メモリ | 82,524 KB |
実行使用メモリ | 115,776 KB |
最終ジャッジ日時 | 2025-06-12 18:33:40 |
合計ジャッジ時間 | 6,177 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 5 TLE * 1 -- * 31 |
ソースコード
MOD = 998244353 def main(): import sys from collections import defaultdict M, N = map(int, sys.stdin.readline().split()) A = list(map(int, sys.stdin.readline().split())) freq = defaultdict(int) for a in A: freq[a] += 1 c = list(freq.values()) if not c: print(0) return max_c = max(c) max_n = max(N, max_c) # Precompute factorial and inverse factorial fact = [1] * (max_n + 1) for i in range(1, max_n + 1): fact[i] = fact[i-1] * i % MOD inv_fact = [1] * (max_n + 1) inv_fact[max_n] = pow(fact[max_n], MOD-2, MOD) for i in range(max_n - 1, -1, -1): inv_fact[i] = inv_fact[i+1] * (i+1) % MOD ans = 0 # Precompute all possible K - c_s for each c in c # To optimize, precompute the required terms for each K for K in range(max_c, N + 1): # Compute product of P(K, c_s) for all s product_p = 1 for x in c: if K < x: product_p = 0 break product_p = product_p * fact[K] % MOD product_p = product_p * inv_fact[K - x] % MOD if product_p == 0: continue # Compute inclusion-exclusion sum for this K sum_ie = 0 for d in range(0, K + 1): t = K - d valid = True for x in c: if t < x: valid = False break if not valid: continue # Compute combination C(K, d) comb = fact[K] * inv_fact[d] % MOD comb = comb * inv_fact[K - d] % MOD # Compute product of P(t, c_s) product_t = 1 for x in c: product_t = product_t * fact[t] % MOD product_t = product_t * inv_fact[t - x] % MOD term = comb * product_t % MOD if d % 2 == 1: term = (-term) % MOD sum_ie = (sum_ie + term) % MOD ans = (ans + sum_ie) % MOD print(ans) if __name__ == "__main__": main()