結果
| 問題 |
No.2313 Product of Subsequence (hard)
|
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 18:37:27 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 2,691 bytes |
| コンパイル時間 | 255 ms |
| コンパイル使用メモリ | 82,432 KB |
| 実行使用メモリ | 80,672 KB |
| 最終ジャッジ日時 | 2025-06-12 18:37:49 |
| 合計ジャッジ時間 | 7,860 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 5 TLE * 1 -- * 21 |
ソースコード
import sys
from sys import stdin
from collections import defaultdict
MOD = 998244353
def factorize(k):
factors = {}
i = 2
while i * i <= k:
while k % i == 0:
factors[i] = factors.get(i, 0) + 1
k = k // i
i += 1
if k > 1:
factors[k] = 1
return factors
def main():
input = sys.stdin.read().split()
ptr = 0
N, K = int(input[ptr]), int(input[ptr+1])
ptr += 2
A = list(map(int, input[ptr:ptr+N]))
ptr += N
if K == 1:
print((pow(2, N, MOD) - 1) % MOD)
return
factors = factorize(K)
primes = list(factors.keys())
m = len(primes)
if m == 0:
print(0)
return
all_exponents = []
for a in A:
exp = {}
for p in primes:
e = 0
x = a
while x % p == 0:
e += 1
x = x // p
exp[p] = e
all_exponents.append(exp)
total = (pow(2, N, MOD) - 1) % MOD
bad = 0
for mask in range(1, 1 << m):
bits = bin(mask).count('1')
subset = []
required = []
for i in range(m):
if mask & (1 << i):
subset.append(primes[i])
required.append(factors[primes[i]])
filtered = []
for exp in all_exponents:
valid = True
for p, e in zip(subset, required):
if exp[p] >= e:
valid = False
break
if valid:
filtered.append([exp[p] for p in subset])
if not filtered:
continue
k = len(subset)
dp = defaultdict(int)
initial_state = tuple([0] * k)
dp[initial_state] = 1
for exponents in filtered:
new_dp = defaultdict(int)
for state in dp:
current = list(state)
new_state = []
valid = True
for i in range(k):
s = current[i] + exponents[i]
if s >= required[i]:
valid = False
break
new_state.append(s)
if not valid:
continue
new_state = tuple(new_state)
new_dp[new_state] = (new_dp[new_state] + dp[state]) % MOD
for state in new_dp:
dp[state] = (dp[state] + new_dp[state]) % MOD
sum_dp = sum(dp.values()) % MOD
count = (sum_dp - 1) % MOD
sign = (-1) ** (bits + 1)
bad = (bad + sign * count) % MOD
answer = (total - bad) % MOD
print(answer)
if __name__ == '__main__':
main()
gew1fw