結果
| 問題 |
No.577 Prime Powerful Numbers
|
| コンテスト | |
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 18:58:15 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 3,565 bytes |
| コンパイル時間 | 184 ms |
| コンパイル使用メモリ | 82,260 KB |
| 実行使用メモリ | 130,300 KB |
| 最終ジャッジ日時 | 2025-06-12 18:58:25 |
| 合計ジャッジ時間 | 6,615 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 1 |
| other | TLE * 1 -- * 9 |
ソースコード
import sys
import math
def sieve(limit):
sieve = [True] * (limit + 1)
sieve[0] = sieve[1] = False
for i in range(2, int(math.sqrt(limit)) + 1):
if sieve[i]:
sieve[i*i : limit+1 : i] = [False] * len(sieve[i*i : limit+1 : i])
primes = [i for i, is_prime in enumerate(sieve) if is_prime]
return primes
primes = sieve(10**6)
def is_prime(n):
if n < 2:
return False
for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]:
if n % p == 0:
return n == p
d = n - 1
s = 0
while d % 2 == 0:
d //= 2
s += 1
for a in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]:
if a >= n:
continue
x = pow(a, d, n)
if x == 1 or x == n - 1:
continue
for _ in range(s - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
def integer_nth_root(x, n):
if x == 0:
return 0
low = 1
high = x
while low <= high:
mid = (low + high) // 2
try:
temp = mid ** n
except OverflowError:
temp = float('inf')
if temp == x:
return mid
elif temp < x:
low = mid + 1
else:
high = mid - 1
return high
def is_prime_power(x):
if x < 2:
return False
max_e = x.bit_length()
for e in range(max_e, 0, -1):
k = integer_nth_root(x, e)
if k ** e == x:
if is_prime(k):
return True
return False
def solve():
input = sys.stdin.read().split()
Q = int(input[0])
for i in range(1, Q + 1):
N = int(input[i])
found = False
# Case 1: p is a prime, rem = N - p is a prime power
for p in primes:
if p >= N:
break
rem = N - p
if rem < 2:
continue
if is_prime_power(rem):
found = True
break
if not found:
# Check if N-2 is a prime power (since 2 is a prime)
if (N - 2) >= 2:
if is_prime_power(N - 2):
found = True
if found:
print("Yes")
continue
# Case 2: both terms are prime powers with exponents >= 2
for a in range(2, 61):
p_max = integer_nth_root(N, a)
if p_max < 2:
continue
# Check p_max and nearby values
for delta in range(100):
p = p_max - delta
if p < 2:
break
if not is_prime(p):
continue
pa = p ** a
if pa > N:
continue
rem = N - pa
if rem < 2:
continue
if is_prime_power(rem):
found = True
break
if found:
break
# Check primes from sieve up to p_max
for p in primes:
if p > p_max:
break
pa = p ** a
if pa > N:
break
rem = N - pa
if rem < 2:
continue
if is_prime_power(rem):
found = True
break
if found:
break
print("Yes" if found else "No")
if __name__ == "__main__":
solve()
gew1fw