結果
問題 |
No.719 Coprime
|
ユーザー |
![]() |
提出日時 | 2025-06-12 19:00:19 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 2,061 bytes |
コンパイル時間 | 164 ms |
コンパイル使用メモリ | 82,296 KB |
実行使用メモリ | 66,388 KB |
最終ジャッジ日時 | 2025-06-12 19:00:25 |
合計ジャッジ時間 | 4,456 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 44 WA * 17 |
ソースコード
import math def main(): N = int(input().strip()) if N < 2: print(0) return # Sieve of Eratosthenes to find primes up to N sieve = [True] * (N + 1) sieve[0] = sieve[1] = False for i in range(2, int(math.sqrt(N)) + 1): if sieve[i]: sieve[i*i:N+1:i] = [False] * len(sieve[i*i:N+1:i]) primes = [i for i, is_prime in enumerate(sieve) if is_prime] # Compute max_prime_power for each prime max_prime_power = {} for p in primes: max_pow = p while max_pow * p <= N: max_pow *= p max_prime_power[p] = max_pow # Generate composite numbers (non-primes >= 2) composites = [] for num in range(2, N + 1): if not sieve[num]: composites.append(num) composites.sort(reverse=True) # Track which primes are invalidated (their max_prime_power is not used) valid_primes = set(max_prime_power.keys()) total = sum(max_prime_power[p] for p in valid_primes) # Process each composite number in descending order for x in composites: # Factorize x to get its unique prime factors factors = set() temp = x for p in primes: if p * p > temp: break if temp % p == 0: factors.add(p) while temp % p == 0: temp //= p if temp > 1: factors.add(temp) # Check if all factors are primes (handle case where temp is a prime) valid = True sum_powers = 0 for p in factors: if p not in valid_primes or p not in max_prime_power: valid = False break sum_powers += max_prime_power[p] if not valid: continue if x > sum_powers: total += x - sum_powers # Invalidate the primes in factors for p in factors: if p in valid_primes: valid_primes.remove(p) print(total) if __name__ == "__main__": main()