結果
| 問題 |
No.719 Coprime
|
| コンテスト | |
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 19:00:19 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 2,061 bytes |
| コンパイル時間 | 164 ms |
| コンパイル使用メモリ | 82,296 KB |
| 実行使用メモリ | 66,388 KB |
| 最終ジャッジ日時 | 2025-06-12 19:00:25 |
| 合計ジャッジ時間 | 4,456 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 44 WA * 17 |
ソースコード
import math
def main():
N = int(input().strip())
if N < 2:
print(0)
return
# Sieve of Eratosthenes to find primes up to N
sieve = [True] * (N + 1)
sieve[0] = sieve[1] = False
for i in range(2, int(math.sqrt(N)) + 1):
if sieve[i]:
sieve[i*i:N+1:i] = [False] * len(sieve[i*i:N+1:i])
primes = [i for i, is_prime in enumerate(sieve) if is_prime]
# Compute max_prime_power for each prime
max_prime_power = {}
for p in primes:
max_pow = p
while max_pow * p <= N:
max_pow *= p
max_prime_power[p] = max_pow
# Generate composite numbers (non-primes >= 2)
composites = []
for num in range(2, N + 1):
if not sieve[num]:
composites.append(num)
composites.sort(reverse=True)
# Track which primes are invalidated (their max_prime_power is not used)
valid_primes = set(max_prime_power.keys())
total = sum(max_prime_power[p] for p in valid_primes)
# Process each composite number in descending order
for x in composites:
# Factorize x to get its unique prime factors
factors = set()
temp = x
for p in primes:
if p * p > temp:
break
if temp % p == 0:
factors.add(p)
while temp % p == 0:
temp //= p
if temp > 1:
factors.add(temp)
# Check if all factors are primes (handle case where temp is a prime)
valid = True
sum_powers = 0
for p in factors:
if p not in valid_primes or p not in max_prime_power:
valid = False
break
sum_powers += max_prime_power[p]
if not valid:
continue
if x > sum_powers:
total += x - sum_powers
# Invalidate the primes in factors
for p in factors:
if p in valid_primes:
valid_primes.remove(p)
print(total)
if __name__ == "__main__":
main()
gew1fw