結果
| 問題 |
No.577 Prime Powerful Numbers
|
| コンテスト | |
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 19:00:41 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 4,408 bytes |
| コンパイル時間 | 210 ms |
| コンパイル使用メモリ | 82,328 KB |
| 実行使用メモリ | 130,300 KB |
| 最終ジャッジ日時 | 2025-06-12 19:00:56 |
| 合計ジャッジ時間 | 6,602 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 1 |
| other | TLE * 1 -- * 9 |
ソースコード
import sys
import math
def sieve(max_limit):
sieve = [True] * (max_limit + 1)
sieve[0] = sieve[1] = False
for i in range(2, int(math.sqrt(max_limit)) + 1):
if sieve[i]:
sieve[i*i : max_limit+1 : i] = [False] * len(sieve[i*i : max_limit+1 : i])
primes = [i for i, is_p in enumerate(sieve) if is_p]
return sieve, primes
sieve_limit = 10**6
is_prime_sieve, primes_list = sieve(sieve_limit)
def is_prime(n):
if n <= sieve_limit:
return is_prime_sieve[n]
d = n - 1
s = 0
while d % 2 == 0:
d //= 2
s += 1
for a in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]:
if a >= n:
continue
x = pow(a, d, n)
if x == 1 or x == n - 1:
continue
for _ in range(s - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
def integer_nth_root(y, k):
if y < 0:
return 0
if y == 0:
return 0
low = 1
high = y
while low <= high:
mid = (low + high) // 2
try:
temp = pow(mid, k)
except OverflowError:
high = mid - 1
continue
if temp == y:
return mid
elif temp < y:
low = mid + 1
else:
high = mid - 1
return high
def is_prime_power(y):
if y <= 1:
return False
if is_prime(y):
return True
max_k = y.bit_length()
for k in range(max_k, 1, -1):
if k > y.bit_length():
continue
root = integer_nth_root(y, k)
if root == 0 or root == 1:
continue
if pow(root, k) != y:
continue
if is_prime(root):
return True
return False
def solve():
Q = int(sys.stdin.readline())
for _ in range(Q):
N = int(sys.stdin.readline())
found = False
for a in range(3, 61):
max_p = integer_nth_root(N, a)
if max_p < 2:
continue
for p in range(2, max_p + 1):
if p <= sieve_limit and not is_prime_sieve[p]:
continue
if p > sieve_limit and not is_prime(p):
continue
x = pow(p, a)
if x > N:
break
y = N - x
if y <= 0:
continue
if is_prime_power(y):
found = True
break
if found:
break
if found:
print("Yes")
continue
for p in primes_list:
x = p * p
if x > N:
break
y = N - x
if y <= 0:
continue
if is_prime_power(y):
found = True
break
if found:
print("Yes")
continue
for p in primes_list:
x = p
if x > N:
break
y = N - x
if y <= 0:
continue
if is_prime_power(y):
found = True
break
if found:
print("Yes")
continue
for q in primes_list:
y = q
x = N - y
if x <= 0:
continue
if is_prime_power(x):
found = True
break
if found:
print("Yes")
continue
for a in range(1, 61):
x = pow(2, a)
if x > N:
break
y = N - x
if y <= 0:
continue
if is_prime_power(y):
found = True
break
if found:
print("Yes")
continue
small_primes = [3,5,7,11,13,17,19,23,29,31,37]
for p in small_primes:
for a in range(1, 61):
x = pow(p, a)
if x > N:
break
y = N - x
if y <= 0:
continue
if is_prime_power(y):
found = True
break
if found:
break
if found:
print("Yes")
continue
print("No")
if __name__ == "__main__":
solve()
gew1fw