結果
問題 |
No.577 Prime Powerful Numbers
|
ユーザー |
![]() |
提出日時 | 2025-06-12 19:04:24 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 2,978 bytes |
コンパイル時間 | 250 ms |
コンパイル使用メモリ | 82,184 KB |
実行使用メモリ | 130,292 KB |
最終ジャッジ日時 | 2025-06-12 19:04:39 |
合計ジャッジ時間 | 6,687 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | -- * 1 |
other | TLE * 1 -- * 9 |
ソースコード
import sys import math def sieve(n): sieve = [True] * (n + 1) sieve[0] = sieve[1] = False for i in range(2, int(math.isqrt(n)) + 1): if sieve[i]: sieve[i*i : n+1 : i] = [False] * len(sieve[i*i : n+1 : i]) primes = [i for i, is_prime in enumerate(sieve) if is_prime] return primes primes = sieve(10**6) def is_prime(n): if n < 2: return False for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if n % p == 0: return n == p d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for a in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True def kth_root(n, k): if k == 0: return None low = 1 high = n while low <= high: mid = (low + high) // 2 try: power = mid ** k except OverflowError: high = mid - 1 continue if power == n: return mid elif power < n: low = mid + 1 else: high = mid - 1 return None def is_prime_power(n): if n < 2: return False if is_prime(n): return True max_k = n.bit_length() for k in range(2, max_k + 1): root = kth_root(n, k) if root is not None and is_prime(root): return True return False Q = int(sys.stdin.readline()) for _ in range(Q): N = int(sys.stdin.readline()) if N % 2 == 0: print("Yes" if N >= 4 else "No") continue # Check N-2 if N >= 3 and (N - 2) >= 2: if is_prime_power(N - 2): print("Yes") continue found = False # Check small primes' exponents for p in primes: if p > N: break a = 1 while True: try: x = p ** a except OverflowError: break if x > N: break y = N - x if y < 2: break if is_prime_power(y): found = True break a += 1 if found: break if found: print("Yes") continue # Check small primes' higher exponents for y, x = N - y for q in primes: if q > N: break b = 2 while True: try: y = q ** b except OverflowError: break if y > N: break x = N - y if x < 2: break if is_prime(x): found = True break b += 1 if found: break print("Yes" if found else "No")