結果
| 問題 |
No.2198 Concon Substrings (COuNt-CONstruct Version)
|
| コンテスト | |
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 19:15:51 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
MLE
|
| 実行時間 | - |
| コード長 | 1,342 bytes |
| コンパイル時間 | 166 ms |
| コンパイル使用メモリ | 82,400 KB |
| 実行使用メモリ | 848,628 KB |
| 最終ジャッジ日時 | 2025-06-12 19:16:02 |
| 合計ジャッジ時間 | 4,026 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 20 MLE * 1 -- * 83 |
ソースコード
import math
M = int(input())
if M == 0:
print("kudamakitsukasa")
else:
# Check if M is a tetrahedral number
low = 1
high = 2000000 # A sufficiently large upper bound
found_k = -1
while low <= high:
mid = (low + high) // 2
t = mid * (mid + 1) * (mid + 2) // 6
if t == M:
found_k = mid
break
elif t < M:
low = mid + 1
else:
high = mid - 1
if found_k != -1:
print("con" * found_k)
else:
# Find a, b, c such that a*b*c = M and a + b + c <= 60000
max_a = int(M ** (1/3)) + 2
found = False
for a in range(max_a, 0, -1):
if M % a != 0:
continue
quotient = M // a
max_b = int(math.isqrt(quotient))
b = None
for candidate_b in range(max_b, 0, -1):
if quotient % candidate_b == 0:
b = candidate_b
break
if b is None:
continue
c = quotient // b
if a + b + c <= 60000:
print('c' * a + 'o' * b + 'n' * c)
found = True
break
if not found:
# Fallback (should not happen as per problem statement)
print('c' * 1 + 'o' * 1 + 'n' * M)
gew1fw