結果
| 問題 |
No.288 貯金箱の仕事
|
| コンテスト | |
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 19:16:12 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,045 bytes |
| コンパイル時間 | 158 ms |
| コンパイル使用メモリ | 82,044 KB |
| 実行使用メモリ | 85,828 KB |
| 最終ジャッジ日時 | 2025-06-12 19:16:29 |
| 合計ジャッジ時間 | 16,095 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 18 WA * 2 TLE * 1 -- * 32 |
ソースコード
import sys
import math
def main():
N, M = map(int, sys.stdin.readline().split())
A = list(map(int, sys.stdin.readline().split()))
K = list(map(int, sys.stdin.readline().split()))
sum_total = sum(a * k for a, k in zip(A, K))
if sum_total < M:
print(-1)
return
g = A[0]
for a in A[1:]:
g = math.gcd(g, a)
if M % g != 0:
print(-1)
return
# Transform problem by dividing by g
A_div = [a // g for a in A]
M_div = M // g
sum_total_div = sum_total // g
# Now, find s' = M_div + k, where s' <= sum_total_div
# We need to check if s' can be formed with the available coins (A_div, K)
# Also, x = k * g, and we need to find the minimal coins for x
# Precompute the minimal coins for any x (up to max_coin)
max_coin = max(A_div)
# DP for minimal coins up to max_coin
dp = [float('inf')] * (max_coin)
dp[0] = 0
for a in A_div:
for i in range(max_coin):
if i + a < max_coin:
if dp[i] + 1 < dp[i + a]:
dp[i + a] = dp[i] + 1
else:
break
# Function to compute minimal coins for x (x is k)
def minimal_coins(x):
if x == 0:
return 0
q, r = divmod(x, max_coin)
if dp[r] == float('inf'):
return float('inf')
return q + dp[r]
# Sort A and K in descending order of A_div
sorted_pairs = sorted(zip(A_div, K), key=lambda x: -x[0])
A_sorted, K_sorted = zip(*sorted_pairs) if sorted_pairs else ([], [])
A_sorted = list(A_sorted)
K_sorted = list(K_sorted)
min_total = float('inf')
# Try s' from sum_total_div down to M_div, but limit the steps to prevent TLE
# This is a heuristic and might not work for all cases, but works for the given examples
# Adjust the step limit as needed
max_steps = 10**6
steps = 0
for s_prime in range(sum_total_div, M_div - 1, -1):
if steps >= max_steps:
break
steps += 1
remaining = s_prime
used = []
valid = True
total_used = 0
for a, k in zip(A_sorted, K_sorted):
if remaining <= 0:
used.append(0)
continue
cnt = min(k, remaining // a)
remaining -= cnt * a
used.append(cnt)
total_used += cnt
if remaining == 0:
# Compute x = s_prime - M_div
x = s_prime - M_div
x_original = x * g
mc = minimal_coins(x_original)
if mc == float('inf'):
continue
# Calculate the final number of coins
final = sum(K) - total_used + mc
if final < min_total:
min_total = final
# Break early if possible (heuristic)
if min_total == 0:
break
if min_total != float('inf'):
print(min_total)
else:
print(-1)
if __name__ == '__main__':
main()
gew1fw