結果
| 問題 |
No.856 増える演算
|
| コンテスト | |
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 19:29:19 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 1,537 bytes |
| コンパイル時間 | 244 ms |
| コンパイル使用メモリ | 82,132 KB |
| 実行使用メモリ | 71,924 KB |
| 最終ジャッジ日時 | 2025-06-12 19:30:04 |
| 合計ジャッジ時間 | 31,577 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 36 WA * 13 TLE * 2 -- * 29 |
ソースコード
MOD = 10**9 + 7
def main():
import sys
input = sys.stdin.read
data = input().split()
N = int(data[0])
A = list(map(int, data[1:N+1]))
if N < 2:
print(1)
return
# Find the two smallest elements
s = min(A)
A_copy = A.copy()
A_copy.remove(s)
if not A_copy:
t = s
else:
t = min(A_copy)
# Compute min_term = (s + t) * s^t
min_sum = s + t
min_product = pow(s, t, MOD)
min_term = (min_sum % MOD) * (min_product % MOD) % MOD
# Compute P2: product of A_i^(sum of A_j where j >i)
suffix_sum = [0] * (N + 1)
for i in range(N-1, -1, -1):
suffix_sum[i] = (A[i] + suffix_sum[i+1]) % (MOD-1)
P2 = 1
for i in range(N):
a = A[i] % MOD
exp = suffix_sum[i+1] % (MOD-1)
if exp == 0 and a == 0:
P2 = 0
break
if a == 0:
term = 0
else:
term = pow(a, exp, MOD)
P2 = (P2 * term) % MOD
# Compute P1: product of (A_i + A_j) for i < j
P1 = 1
for i in range(N):
for j in range(i+1, N):
term = (A[i] + A[j]) % MOD
P1 = (P1 * term) % MOD
# Compute M = (P1 * P2) / min_term mod MOD
# Since MOD is prime, compute inverse of min_term modulo MOD
if min_term == 0:
print(0)
return
inv_min = pow(min_term, MOD-2, MOD)
numerator = (P1 * P2) % MOD
M = (numerator * inv_min) % MOD
print(M)
if __name__ == '__main__':
main()
gew1fw