結果
| 問題 | No.1983 [Cherry 4th Tune C] 南の島のマーメイド |
| コンテスト | |
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 19:57:24 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,873 bytes |
| コンパイル時間 | 206 ms |
| コンパイル使用メモリ | 82,632 KB |
| 実行使用メモリ | 220,464 KB |
| 最終ジャッジ日時 | 2025-06-12 19:59:22 |
| 合計ジャッジ時間 | 24,392 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 16 WA * 25 |
ソースコード
import sys
from sys import stdin
def main():
input = sys.stdin.read().split()
ptr = 0
N = int(input[ptr]); ptr += 1
M = int(input[ptr]); ptr += 1
Q = int(input[ptr]); ptr += 1
edges = []
adj = [[] for _ in range(N + 1)] # 1-based indexing
for i in range(M):
u = int(input[ptr]); ptr += 1
v = int(input[ptr]); ptr += 1
edges.append((u, v))
adj[u].append((v, i))
adj[v].append((u, i))
# DSU for original connected components
class DSU:
def __init__(self, size):
self.parent = list(range(size + 1))
self.rank = [0] * (size + 1)
def find(self, x):
if self.parent[x] != x:
self.parent[x] = self.find(self.parent[x])
return self.parent[x]
def union(self, x, y):
x_root = self.find(x)
y_root = self.find(y)
if x_root == y_root:
return
if self.rank[x_root] < self.rank[y_root]:
self.parent[x_root] = y_root
else:
self.parent[y_root] = x_root
if self.rank[x_root] == self.rank[y_root]:
self.rank[x_root] += 1
dsu = DSU(N)
for u, v in edges:
dsu.union(u, v)
# Tarjan's algorithm to find bridges
is_bridge = [False] * M
disc = [-1] * (N + 1)
low = [-1] * (N + 1)
time = 0
for u in range(1, N + 1):
if disc[u] == -1:
stack = [(u, -1, False)] # (node, parent_edge_idx, visited)
while stack:
node, parent_edge, visited = stack.pop()
if visited:
for v, edge_idx in adj[node]:
if edge_idx == parent_edge:
continue
if disc[v] > disc[node]: # Tree edge
if low[v] < low[node]:
low[node] = low[v]
if low[v] > disc[node]:
is_bridge[edge_idx] = True
else:
low[node] = min(low[node], disc[v])
continue
if disc[node] != -1:
continue
disc[node] = low[node] = time
time += 1
stack.append((node, parent_edge, True))
# Push children
for v, edge_idx in adj[node]:
if edge_idx == parent_edge:
continue
if disc[v] == -1:
stack.append((v, edge_idx, False))
else:
low[node] = min(low[node], disc[v])
# Build adjacency list without bridges
adj_non_bridge = [[] for _ in range(N + 1)]
for i in range(M):
if not is_bridge[i]:
u, v = edges[i]
adj_non_bridge[u].append(v)
adj_non_bridge[v].append(u)
# Compute 2-edge-connected components
bcc_id = [-1] * (N + 1)
current_id = 0
for u in range(1, N + 1):
if bcc_id[u] == -1:
stack = [u]
bcc_id[u] = current_id
while stack:
node = stack.pop()
for v in adj_non_bridge[node]:
if bcc_id[v] == -1:
bcc_id[v] = current_id
stack.append(v)
current_id += 1
# Process queries
output = []
for _ in range(Q):
x = int(input[ptr]); ptr += 1
y = int(input[ptr]); ptr += 1
if dsu.find(x) != dsu.find(y):
output.append("No")
else:
if bcc_id[x] == bcc_id[y]:
output.append("No")
else:
output.append("Yes")
print('\n'.join(output))
if __name__ == '__main__':
main()
gew1fw