結果
| 問題 | 
                            No.1526 Sum of Mex 2
                             | 
                    
| ユーザー | 
                             gew1fw
                         | 
                    
| 提出日時 | 2025-06-12 20:05:13 | 
| 言語 | PyPy3  (7.3.15)  | 
                    
| 結果 | 
                             
                                TLE
                                 
                             
                            
                         | 
                    
| 実行時間 | - | 
| コード長 | 2,752 bytes | 
| コンパイル時間 | 193 ms | 
| コンパイル使用メモリ | 82,136 KB | 
| 実行使用メモリ | 115,688 KB | 
| 最終ジャッジ日時 | 2025-06-12 20:11:38 | 
| 合計ジャッジ時間 | 8,821 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge2 / judge4 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 30 TLE * 1 -- * 1 | 
ソースコード
import bisect
def main():
    import sys
    input = sys.stdin.read().split()
    n = int(input[0])
    A = list(map(int, input[1:n+1]))
    
    # Compute the mex of the entire array
    present = set()
    mex = 1
    for num in A:
        present.add(num)
        while mex in present:
            mex += 1
    
    # Precompute the positions for each number
    from collections import defaultdict
    pos = defaultdict(list)
    for idx, num in enumerate(A):
        pos[num].append(idx)
    
    total = 0
    
    for x in range(1, mex + 1):
        # Get all positions of x, sorted
        x_pos = pos.get(x, [])
        regions = []
        prev = -1
        for p in x_pos:
            if prev + 1 <= p - 1:
                regions.append((prev + 1, p - 1))
            prev = p
        if prev != n - 1:
            regions.append((prev + 1, n - 1))
        
        # Check if x-1 is present in the entire array
        required = set(range(1, x))
        if x > 1 and any(y not in pos or len(pos[y]) == 0 for y in required):
            continue
        
        cnt = 0
        for (s, e) in regions:
            # Check if this region contains all required elements
            valid = True
            if x > 1:
                for y in required:
                    ys = pos[y]
                    idx = bisect.bisect_left(ys, s)
                    if idx >= len(ys) or ys[idx] > e:
                        valid = False
                        break
            if not valid:
                continue
            
            # Now compute the number of intervals in [s, e] that contain all required elements
            # Using sliding window
            if x == 1:
                # All intervals in this region are valid
                L = e - s + 1
                cnt += L * (L + 1) // 2
                continue
            
            freq = {}
            required_count = len(required)
            current_count = 0
            res = 0
            left = s
            for right in range(s, e + 1):
                num = A[right]
                if num in required:
                    if num not in freq or freq[num] == 0:
                        current_count += 1
                    freq[num] = freq.get(num, 0) + 1
                
                while current_count == required_count:
                    res += e - right + 1
                    # Move left
                    left_num = A[left]
                    if left_num in required:
                        freq[left_num] -= 1
                        if freq[left_num] == 0:
                            current_count -= 1
                    left += 1
            cnt += res
        total += x * cnt
    print(total)
if __name__ == "__main__":
    main()
            
            
            
        
            
gew1fw