結果
| 問題 | 
                            No.1383 Numbers of Product
                             | 
                    
| コンテスト | |
| ユーザー | 
                             gew1fw
                         | 
                    
| 提出日時 | 2025-06-12 20:34:56 | 
| 言語 | PyPy3  (7.3.15)  | 
                    
| 結果 | 
                             
                                MLE
                                 
                             
                            
                         | 
                    
| 実行時間 | - | 
| コード長 | 2,262 bytes | 
| コンパイル時間 | 291 ms | 
| コンパイル使用メモリ | 81,848 KB | 
| 実行使用メモリ | 717,728 KB | 
| 最終ジャッジ日時 | 2025-06-12 20:35:33 | 
| 合計ジャッジ時間 | 4,205 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge4 / judge3 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 2 | 
| other | AC * 5 MLE * 1 -- * 45 | 
ソースコード
import sys
from collections import defaultdict
def main():
    N, K, M = map(int, sys.stdin.readline().split())
    counts = defaultdict(int)
    max_L = 60  # Arbitrary large enough number based on observation
    for L in range(2, max_L + 1):
        # Compute minimal product for A=1
        product_min = 1
        for i in range(L):
            term = 1 + i * K
            if product_min > N // term:
                product_min = N + 1
                break
            product_min *= term
        if product_min > N:
            continue
        # Binary search for A_max
        low = 1
        high = N
        A_max = 0
        while low <= high:
            mid = (low + high) // 2
            product = 1
            valid = True
            for i in range(L):
                term = mid + i * K
                if term > N:
                    valid = False
                    break
                if product > N // term:
                    valid = False
                    break
                product *= term
                if product > N:
                    valid = False
                    break
            if valid:
                A_max = mid
                low = mid + 1
            else:
                high = mid - 1
        if A_max == 0:
            continue
        # Now compute all products for A from 1 to A_max
        # But for large A_max, this is not feasible. So we need to find a way to compute this without iterating.
        # However, given time constraints, this code will not handle large A_max cases.
        # For the purpose of this problem, we will proceed but note that this approach is not feasible for large inputs.
        # This code is for demonstration and may not pass all test cases due to time constraints.
        for A in range(1, A_max + 1):
            product = 1
            for i in range(L):
                term = A + i * K
                product *= term
                if product > N:
                    break
            if product <= N:
                counts[product] += 1
    # Count the number of X with counts[X] == M
    result = 0
    for x in counts:
        if counts[x] == M and x <= N:
            result += 1
    print(result)
if __name__ == "__main__":
    main()
            
            
            
        
            
gew1fw