結果
問題 |
No.1763 Many Balls
|
ユーザー |
![]() |
提出日時 | 2025-06-12 20:41:36 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 2,482 bytes |
コンパイル時間 | 218 ms |
コンパイル使用メモリ | 82,176 KB |
実行使用メモリ | 72,192 KB |
最終ジャッジ日時 | 2025-06-12 20:41:51 |
合計ジャッジ時間 | 13,332 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 3 WA * 4 TLE * 1 -- * 55 |
ソースコード
import sys MOD = 90001 def main(): input = sys.stdin.read().split() ptr = 0 N = int(input[ptr]) ptr += 1 M = int(input[ptr]) ptr += 1 if N >= MOD: print(0) return # Precompute factorial and inverse factorial mod MOD factorial = [1] * (MOD) for i in range(1, MOD): factorial[i] = factorial[i-1] * i % MOD inv_fact = [1] * (MOD) inv_fact[MOD-1] = pow(factorial[MOD-1], MOD-2, MOD) for i in range(MOD-2, -1, -1): inv_fact[i] = inv_fact[i+1] * (i+1) % MOD # Read each person's conditions conditions = [] for _ in range(M): k = int(input[ptr]) ptr +=1 A = list(map(int, input[ptr:ptr+k])) ptr +=k conditions.append(A) # Precompute for each person the allowed s allowed = [] for A in conditions: is_allowed = [False] * (N +1) for s in range(0, N+1): for d in A: if d ==0: continue if s % d ==0: is_allowed[s] = True break allowed.append(is_allowed) # Function to create the polynomial for a person def make_poly(allow): poly = [0]*(N+1) for s in range(0, N+1): if allow[s]: poly[s] = inv_fact[s] else: poly[s] = 0 return poly # Initialize E as 1 (only x^0 term) E = [0]*(N+1) E[0] = 1 # Multiply by each person's polynomial for i in range(M): person_poly = make_poly(allowed[i]) new_E = [0]*(N+1) for a in range(0, N+1): if E[a] ==0: continue for b in range(0, N -a +1): if person_poly[b] ==0: continue new_E[a + b] = (new_E[a + b] + E[a] * person_poly[b]) % MOD E = new_E # Prepare e^x polynomial: coefficients are inv_fact[s] e_poly = [inv_fact[s] for s in range(N+1)] # Multiply E with e_poly result_poly = [0]*(N+1) for a in range(0, N+1): if E[a] ==0: continue for b in range(0, N -a +1): term = E[a] * e_poly[b] % MOD result_poly[a + b] = (result_poly[a + b] + term) % MOD # The coefficient at x^N coeff = result_poly[N] # Compute N! mod MOD n_fact = factorial[N] # Total ways total = (n_fact * coeff) % MOD print(total) if __name__ == "__main__": main()