結果
問題 |
No.1946 ロッカーの問題
|
ユーザー |
![]() |
提出日時 | 2025-06-12 20:50:02 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 1,712 bytes |
コンパイル時間 | 168 ms |
コンパイル使用メモリ | 82,240 KB |
実行使用メモリ | 154,640 KB |
最終ジャッジ日時 | 2025-06-12 20:53:42 |
合計ジャッジ時間 | 5,681 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 5 WA * 14 |
ソースコード
def main(): import sys input = sys.stdin.read().split() idx = 0 N = int(input[idx]) idx += 1 M = int(input[idx]) idx += 1 A = [] if M > 0: A = list(map(int, input[idx:idx+M])) idx += M # Compute d[j] for j from 1 to N d = [0] * (N + 1) for i in range(1, N + 1): for j in range(i, N + 1, i): d[j] += 1 # Compute is_prime and mu[j] is_prime = [True] * (N + 1) is_prime[0] = is_prime[1] = False mu = [1] * (N + 1) for i in range(2, N + 1): if is_prime[i]: # Mark multiples of i^2 j = i * i while j <= N: mu[j] = 0 j += i * i # Mark multiples of i for j in range(i, N + 1, i): if mu[j] != 0: mu[j] *= -1 # Sieve of Eratosthenes to mark non-primes j = i * i while j <= N: is_prime[j] = False j += i # Compute s[j] s = [0] * (N + 1) A_set = set(A) for j in A_set: s[j] = 1 # Compute c[j] c = [0] * (N + 1) for j in range(1, N + 1): c[j] = (d[j] - s[j]) % 2 # Precompute divisors for each i divisors = [[] for _ in range(N + 1)] for k in range(1, N + 1): for i in range(k, N + 1, k): divisors[i].append(k) # Compute x_i total_skipped = 0 for i in range(1, N + 1): sum_xi = 0 for k in divisors[i]: m = i // k sum_xi += mu[k] * c[m] x_i = sum_xi % 2 total_skipped += x_i print(total_skipped) if __name__ == "__main__": main()