結果
| 問題 |
No.1301 Strange Graph Shortest Path
|
| コンテスト | |
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 21:06:17 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 2,532 bytes |
| コンパイル時間 | 254 ms |
| コンパイル使用メモリ | 81,920 KB |
| 実行使用メモリ | 162,852 KB |
| 最終ジャッジ日時 | 2025-06-12 21:08:57 |
| 合計ジャッジ時間 | 24,715 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 27 WA * 4 TLE * 1 -- * 1 |
ソースコード
import sys
import heapq
def main():
input = sys.stdin.read().split()
idx = 0
N = int(input[idx])
idx += 1
M = int(input[idx])
idx += 1
edges = []
adj = [[] for _ in range(N+1)]
for _ in range(M):
u = int(input[idx])
idx += 1
v = int(input[idx])
idx += 1
c = int(input[idx])
idx += 1
d = int(input[idx])
idx += 1
edges.append((u, v, c, d))
adj[u].append((v, c, d))
adj[v].append((u, c, d))
# Step 1: Find the minimal 1->N path
def dijkstra(start, end, adj):
dist = [float('inf')] * (N+1)
dist[start] = 0
heap = [(0, start)]
parent = [-1] * (N+1)
visited = [False] * (N+1)
while heap:
current_dist, u = heapq.heappop(heap)
if visited[u]:
continue
visited[u] = True
if u == end:
break
for v, c, d in adj[u]:
if not visited[v] and dist[v] > current_dist + c:
dist[v] = current_dist + c
heapq.heappush(heap, (dist[v], v))
parent[v] = u
path = []
u = end
while u != start:
prev = parent[u]
if prev == -1:
break
path.append((prev, u))
u = prev
path.reverse()
return dist[end], path
min_dist_1n, path_1n_edges = dijkstra(1, N, adj)
if min_dist_1n == float('inf'):
print(-1)
return
# Extract the edges used in the path
edge_set = set()
for u, v in path_1n_edges:
for e in edges:
a, b, _, _ = e
if (a == u and b == v) or (a == v and b == u):
edge_set.add((u, v, e[2], e[3]))
break
# Build the modified adjacency list for the return path
modified_adj = [[] for _ in range(N+1)]
for e in edges:
u, v, c, d = e
if (u, v, c, d) in edge_set or (v, u, c, d) in edge_set:
modified_adj[u].append((v, d, c))
modified_adj[v].append((u, d, c))
else:
modified_adj[u].append((v, c, d))
modified_adj[v].append((u, c, d))
# Run Dijkstra again for the return path from N to 1 with modified edges
min_dist_n1, _ = dijkstra(N, 1, modified_adj)
if min_dist_n1 == float('inf'):
print(-1)
return
total = min_dist_1n + min_dist_n1
print(total)
if __name__ == '__main__':
main()
gew1fw