結果
問題 |
No.577 Prime Powerful Numbers
|
ユーザー |
![]() |
提出日時 | 2025-06-12 21:16:25 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 2,857 bytes |
コンパイル時間 | 205 ms |
コンパイル使用メモリ | 82,180 KB |
実行使用メモリ | 151,724 KB |
最終ジャッジ日時 | 2025-06-12 21:17:14 |
合計ジャッジ時間 | 6,608 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | -- * 1 |
other | TLE * 1 -- * 9 |
ソースコード
import math import sys def is_prime(n): if n <= 1: return False elif n <= 3: return True elif n % 2 == 0: return False d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 bases = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37] for a in bases: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True def kth_root(s, k): if s < 0: return -1 low = 0 high = s while low <= high: mid = (low + high) // 2 power = 1 overflow = False for _ in range(k): power *= mid if power > s: overflow = True break if overflow: high = mid - 1 elif power == s: return mid elif power < s: low = mid + 1 else: high = mid - 1 return -1 def is_prime_power(s): if s < 2: return False if is_prime(s): return True max_k = int(math.log2(s)) + 1 for k in range(2, max_k + 1): t = kth_root(s, k) if t != -1 and is_prime(t): return True return False def sieve(n): if n < 2: return [] sieve = [True] * (n + 1) sieve[0] = sieve[1] = False for i in range(2, int(math.sqrt(n)) + 1): if sieve[i]: sieve[i*i : n+1 : i] = [False] * len(sieve[i*i : n+1 : i]) primes = [i for i, is_p in enumerate(sieve) if is_p] return primes def main(): input = sys.stdin.read().split() Q = int(input[0]) for i in range(1, Q + 1): N = int(input[i]) if N >= 4 and is_prime(N - 2): print("Yes") continue found = False for a in range(2, 61): max_p = int(N ** (1.0 / a)) + 1 primes = sieve(max_p) for p in primes: pa = p ** a if pa >= N: continue s = N - pa if is_prime_power(s): found = True break if found: break if not found: for b in range(2, 61): max_q = int(N ** (1.0 / b)) + 1 primes = sieve(max_q) for q in primes: qb = q ** b if qb >= N: continue s = N - qb if is_prime(s): found = True break if found: break print("Yes" if found else "No") if __name__ == "__main__": main()