結果

問題 No.577 Prime Powerful Numbers
ユーザー gew1fw
提出日時 2025-06-12 21:16:25
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 2,857 bytes
コンパイル時間 205 ms
コンパイル使用メモリ 82,180 KB
実行使用メモリ 151,724 KB
最終ジャッジ日時 2025-06-12 21:17:14
合計ジャッジ時間 6,608 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample -- * 1
other TLE * 1 -- * 9
権限があれば一括ダウンロードができます

ソースコード

diff #

import math
import sys

def is_prime(n):
    if n <= 1:
        return False
    elif n <= 3:
        return True
    elif n % 2 == 0:
        return False
    d = n - 1
    s = 0
    while d % 2 == 0:
        d //= 2
        s += 1
    bases = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
    for a in bases:
        if a >= n:
            continue
        x = pow(a, d, n)
        if x == 1 or x == n - 1:
            continue
        for _ in range(s - 1):
            x = pow(x, 2, n)
            if x == n - 1:
                break
        else:
            return False
    return True

def kth_root(s, k):
    if s < 0:
        return -1
    low = 0
    high = s
    while low <= high:
        mid = (low + high) // 2
        power = 1
        overflow = False
        for _ in range(k):
            power *= mid
            if power > s:
                overflow = True
                break
        if overflow:
            high = mid - 1
        elif power == s:
            return mid
        elif power < s:
            low = mid + 1
        else:
            high = mid - 1
    return -1

def is_prime_power(s):
    if s < 2:
        return False
    if is_prime(s):
        return True
    max_k = int(math.log2(s)) + 1
    for k in range(2, max_k + 1):
        t = kth_root(s, k)
        if t != -1 and is_prime(t):
            return True
    return False

def sieve(n):
    if n < 2:
        return []
    sieve = [True] * (n + 1)
    sieve[0] = sieve[1] = False
    for i in range(2, int(math.sqrt(n)) + 1):
        if sieve[i]:
            sieve[i*i : n+1 : i] = [False] * len(sieve[i*i : n+1 : i])
    primes = [i for i, is_p in enumerate(sieve) if is_p]
    return primes

def main():
    input = sys.stdin.read().split()
    Q = int(input[0])
    for i in range(1, Q + 1):
        N = int(input[i])
        if N >= 4 and is_prime(N - 2):
            print("Yes")
            continue
        found = False
        for a in range(2, 61):
            max_p = int(N ** (1.0 / a)) + 1
            primes = sieve(max_p)
            for p in primes:
                pa = p ** a
                if pa >= N:
                    continue
                s = N - pa
                if is_prime_power(s):
                    found = True
                    break
            if found:
                break
        if not found:
            for b in range(2, 61):
                max_q = int(N ** (1.0 / b)) + 1
                primes = sieve(max_q)
                for q in primes:
                    qb = q ** b
                    if qb >= N:
                        continue
                    s = N - qb
                    if is_prime(s):
                        found = True
                        break
                if found:
                    break
        print("Yes" if found else "No")

if __name__ == "__main__":
    main()
0