結果
問題 |
No.577 Prime Powerful Numbers
|
ユーザー |
![]() |
提出日時 | 2025-06-12 21:18:26 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 2,560 bytes |
コンパイル時間 | 247 ms |
コンパイル使用メモリ | 82,112 KB |
実行使用メモリ | 93,432 KB |
最終ジャッジ日時 | 2025-06-12 21:18:44 |
合計ジャッジ時間 | 6,569 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | -- * 1 |
other | TLE * 1 -- * 9 |
ソースコード
import math def is_prime(n): if n <= 1: return False elif n <= 3: return True elif n % 2 == 0: return False s = 0 d = n - 1 while d % 2 == 0: d //= 2 s += 1 bases = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37] for a in bases: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True def integer_nth_root(x, n): if x == 0: return 0 low = 1 high = x while low <= high: mid = (low + high) // 2 power = 1 overflow = False for _ in range(n): power *= mid if power > x: overflow = True break if overflow: high = mid - 1 elif power < x: low = mid + 1 else: return mid return -1 def is_prime_power(x): if x < 2: return False if is_prime(x): return True max_b = int(math.log2(x)) + 1 for b in range(2, max_b + 1): root = integer_nth_root(x, b) if root == -1: continue if root ** b == x: if is_prime(root): return True return False def solve(): import sys input = sys.stdin.read data = input().split() Q = int(data[0]) for i in range(1, Q + 1): N = int(data[i]) found = False max_a = 60 for a in range(2, max_a + 1): max_p = int(N ** (1.0 / a)) if max_p < 2: continue for p in range(2, max_p + 1): if is_prime(p): pa = p ** a if pa >= N: continue rem = N - pa if rem < 2: continue if is_prime_power(rem): found = True break if found: break if found: break if found: print("Yes") continue if N % 2 == 0: if N >= 4: print("Yes") else: print("No") else: if N >= 5 and is_prime(N - 2): print("Yes") else: print("No") if __name__ == "__main__": solve()