結果
| 問題 |
No.2807 Have Another Go (Easy)
|
| コンテスト | |
| ユーザー |
gew1fw
|
| 提出日時 | 2025-06-12 21:28:05 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 2,073 bytes |
| コンパイル時間 | 379 ms |
| コンパイル使用メモリ | 81,964 KB |
| 実行使用メモリ | 271,460 KB |
| 最終ジャッジ日時 | 2025-06-12 21:29:18 |
| 合計ジャッジ時間 | 4,739 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 1 TLE * 1 -- * 44 |
ソースコード
import sys
MOD = 998244353
def main():
N, M, k = map(int, sys.stdin.readline().split())
Cs = list(map(int, sys.stdin.readline().split()))
MOD = 998244353
max_s = 2 * N
f = [0] * (max_s + 7) # s can be up to max_s +6
# Base case: s >= 2*N
for s in range(2*N, 2*N +7):
f[s] = 1
# Compute f[s] for s from 2*N -1 down to 0
for s in range(2*N -1, -1, -1):
total = 0
for d in range(1,7):
if s + d >= len(f):
fsd = 1 # since s +d >=2*N
else:
fsd = f[s + d]
total += fsd
if total >= MOD:
total -= MOD
f[s] = total % MOD
A = f[0]
# Now, for each Ci, compute B
for Ci in Cs:
Ci_mod = Ci % N
# Create a new DP for B, avoiding states where s mod N == Ci_mod
# We compute fB[s], where fB[s] is the number of ways to reach >=2N from s without hitting any state with s' mod N == Ci_mod
# Since the forbidden states are s ≡ Ci_mod mod N, we need to compute fB[s] for s < 2*N
# Initialize fB[s] =0 for s >=2*N
fB = [0] * (max_s +7)
for s in range(2*N, 2*N +7):
fB[s] = 1
# Compute fB[s] for s from 2*N -1 down to 0
# For each s, if s mod N == Ci_mod: fB[s] =0
# else: fB[s] = sum_{d=1-6} fB[s+d] if s +d <2*N; else 1
# We precompute fB[s] for all s
for s in range(2*N -1, -1, -1):
if s % N == Ci_mod:
fB[s] = 0
continue
total = 0
for d in range(1,7):
if s + d >= 2*N:
contrib = 1
else:
if (s + d) >= len(fB):
contrib = 1
else:
contrib = fB[s + d]
total += contrib
if total >= MOD:
total -= MOD
fB[s] = total % MOD
B = fB[0]
ans = (A - B) % MOD
print(ans)
if __name__ == "__main__":
main()
gew1fw