結果
| 問題 | No.2258 The Jikka Tree | 
| ユーザー |  gew1fw | 
| 提出日時 | 2025-06-12 21:45:01 | 
| 言語 | PyPy3 (7.3.15) | 
| 結果 | 
                                WA
                                 
                             | 
| 実行時間 | - | 
| コード長 | 2,644 bytes | 
| コンパイル時間 | 386 ms | 
| コンパイル使用メモリ | 81,664 KB | 
| 実行使用メモリ | 276,004 KB | 
| 最終ジャッジ日時 | 2025-06-12 21:49:52 | 
| 合計ジャッジ時間 | 19,001 ms | 
| ジャッジサーバーID (参考情報) | judge3 / judge5 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 1 | 
| other | AC * 6 WA * 2 TLE * 1 -- * 66 | 
ソースコード
import sys
from sys import stdin
sys.setrecursionlimit(1 << 25)
def main():
    import sys
    input = sys.stdin.read
    data = input().split()
    ptr = 0
    N = int(data[ptr])
    ptr +=1
    tree = [[] for _ in range(N)]
    for _ in range(N-1):
        u = int(data[ptr])
        v = int(data[ptr+1])
        ptr +=2
        tree[u].append(v)
        tree[v].append(u)
    A = list(map(int, data[ptr:ptr+N]))
    ptr += N
    Q = int(data[ptr])
    ptr +=1
    queries = []
    for _ in range(Q):
        a_prime = int(data[ptr])
        b_prime = int(data[ptr+1])
        k_prime = int(data[ptr+2])
        delta = int(data[ptr+3])
        ptr +=4
        queries.append((a_prime, b_prime, k_prime, delta))
    X = []
    X_true = []
    in_time = [0]*N
    out_time = [0]*N
    time = 0
    parent = [ -1 ] * N
    visited = [False] * N
    def dfs(u):
        nonlocal time
        visited[u] = True
        in_time[u] = time
        time +=1
        for v in tree[u]:
            if not visited[v]:
                parent[v] = u
                dfs(v)
        out_time[u] = time -1
    dfs(0)
    def get_sum_subtree(v, l, r, A, k):
        pass
    for q in range(Q):
        a_prime, b_prime, k_prime, delta = queries[q]
        X_prev = X if q==0 else X
        a = a_prime
        b = b_prime
        if q !=0:
            sum_X = sum(X_prev)
            a = (a_prime + sum_X) % N
            b = (b_prime + 2 * sum_X) % N
            k = (k_prime + (sum_X **2)) % 150001
        else:
            k = k_prime
        l = min(a, b)
        r = max(a, b)+1
        T = 0
        for w in range(l, r):
            T += (A[w] + k)
        sum_subtree = [0] * N
        def compute_subtree(v):
            s = (A[v] + k) if l <= v < r else 0
            for child in tree[v]:
                if parent[child] == v:
                    compute_subtree(child)
                    s += sum_subtree[child]
            sum_subtree[v] = s
        compute_subtree(0)
        def find_median(v):
            max_child_sum = 0
            for child in tree[v]:
                if parent[child] == v:
                    if sum_subtree[child] > max_child_sum:
                        max_child_sum = sum_subtree[child]
            if max_child_sum > T / 2:
                for child in tree[v]:
                    if parent[child] == v and sum_subtree[child] > T/2:
                        return find_median(child)
            else:
                return v
        median = find_median(0)
        X.append(median)
        X_true.append(median)
    for x in X_true:
        print(x)
if __name__ == '__main__':
    main()
            
            
            
        