結果
問題 | No.3182 recurrence relation’s intersection sum |
ユーザー |
👑 |
提出日時 | 2025-06-13 21:24:08 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 10 ms / 2,000 ms |
コード長 | 6,018 bytes |
コンパイル時間 | 1,074 ms |
コンパイル使用メモリ | 118,540 KB |
実行使用メモリ | 7,848 KB |
最終ジャッジ日時 | 2025-06-13 21:24:12 |
合計ジャッジ時間 | 2,633 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 40 |
ソースコード
#include <cassert> #include <cmath> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <bitset> #include <chrono> #include <complex> #include <deque> #include <functional> #include <iostream> #include <limits> #include <map> #include <numeric> #include <queue> #include <random> #include <set> #include <sstream> #include <string> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using Int = long long; template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; }; template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; } template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; } template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; } template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; } #define COLOR(s) ("\x1b[" s "m") //////////////////////////////////////////////////////////////////////////////// template <unsigned M_> struct ModInt { static constexpr unsigned M = M_; unsigned x; constexpr ModInt() : x(0U) {} constexpr ModInt(unsigned x_) : x(x_ % M) {} constexpr ModInt(unsigned long long x_) : x(x_ % M) {} constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {} constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {} ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; } ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; } ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; } ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); } ModInt pow(long long e) const { if (e < 0) return inv().pow(-e); ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b; } ModInt inv() const { unsigned a = M, b = x; int y = 0, z = 1; for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; } assert(a == 1U); return ModInt(y); } ModInt operator+() const { return *this; } ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; } ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); } ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); } ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); } ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); } template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); } template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); } template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); } template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); } explicit operator bool() const { return x; } bool operator==(const ModInt &a) const { return (x == a.x); } bool operator!=(const ModInt &a) const { return (x != a.x); } friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; } }; //////////////////////////////////////////////////////////////////////////////// constexpr unsigned MO = 998244353; using Mint = ModInt<MO>; vector<Mint> findLinearRecurrence(const vector<Mint> &as) { const int n = as.size(); int d = 0, m = 0; vector<Mint> cs(n + 1, 0), bs(n + 1, 0); cs[0] = bs[0] = 1; Mint invBef = 1; for (int i = 0; i < n; ++i) { ++m; Mint dif = as[i]; for (int j = 1; j < d + 1; ++j) dif += cs[j] * as[i - j]; if (dif.x != 0) { auto csDup = cs; const Mint r = dif * invBef; for (int j = m; j < n; ++j) cs[j] -= r * bs[j - m]; if (2 * d <= i) { d = i + 1 - d; m = 0; bs = csDup; invBef = dif.inv(); } } } cs.resize(d + 1); return cs; } // x^e mod rev(cs) vector<Mint> powerRev(const vector<Mint> &cs, Int e) { assert(!cs.empty()); assert(cs[0] == 1); const int d = (int)cs.size() - 1; if (d == 0) return {}; if (d == 1) return {(-cs[1]).pow(e)}; auto mul = [&](const vector<Mint> &fs, const vector<Mint> &gs) { vector<Mint> hs(d + d - 1, 0); for (int i = 0; i < d; ++i) for (int j = 0; j < d; ++j) { hs[i + j] += fs[i] * gs[j]; } for (int i = d + d - 1; --i >= d; ) { for (int j = 1; j <= d; ++j) { hs[i - j] -= cs[j] * hs[i]; } } hs.resize(d); return hs; }; vector<Mint> xs(d, 0), ys(d, 0); xs[1] = 1; ys[0] = 1; for (; ; xs = mul(xs, xs)) { if (e & 1) ys = mul(ys, xs); if (!(e >>= 1)) break; } return ys; } Mint linearRecurrenceAt(const vector<Mint> &as, const vector<Mint> &cs, Int e) { assert(!cs.empty()); assert(cs[0] == 1); const int d = (int)cs.size() - 1; assert((int)as.size() >= d); const auto fs = powerRev(cs, e); Mint ans = 0; for (int i = 0; i < d; ++i) { ans += fs[i] * as[i]; } return ans; } constexpr int M = 310; int main() { Int K, L, R; for (; ~scanf("%lld%lld%lld", &K, &L, &R); ) { vector<Mint> as(M), bs(M); as[0] = 1; for (int i = 0; i < M - 1; ++i) as[i + 1] = K * as[i] + Mint(i).pow(K) + Mint(K).pow(i); for (int i = 0; i < M - 1; ++i) bs[i + 1] = bs[i] + as[i]; const auto cs = findLinearRecurrence(bs); cerr<<"|cs| = "<<cs.size()<<endl; Mint ans = 0; ans += linearRecurrenceAt(bs, cs, R + 1); ans -= linearRecurrenceAt(bs, cs, L); printf("%u\n", ans.x); } return 0; }