結果
| 問題 |
No.3182 recurrence relation’s intersection sum
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-06-13 21:24:08 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 10 ms / 2,000 ms |
| コード長 | 6,018 bytes |
| コンパイル時間 | 1,074 ms |
| コンパイル使用メモリ | 118,540 KB |
| 実行使用メモリ | 7,848 KB |
| 最終ジャッジ日時 | 2025-06-13 21:24:12 |
| 合計ジャッジ時間 | 2,633 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 40 |
ソースコード
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <chrono>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")
////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
static constexpr unsigned M = M_;
unsigned x;
constexpr ModInt() : x(0U) {}
constexpr ModInt(unsigned x_) : x(x_ % M) {}
constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
ModInt pow(long long e) const {
if (e < 0) return inv().pow(-e);
ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
}
ModInt inv() const {
unsigned a = M, b = x; int y = 0, z = 1;
for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
assert(a == 1U); return ModInt(y);
}
ModInt operator+() const { return *this; }
ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
explicit operator bool() const { return x; }
bool operator==(const ModInt &a) const { return (x == a.x); }
bool operator!=(const ModInt &a) const { return (x != a.x); }
friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////
constexpr unsigned MO = 998244353;
using Mint = ModInt<MO>;
vector<Mint> findLinearRecurrence(const vector<Mint> &as) {
const int n = as.size();
int d = 0, m = 0;
vector<Mint> cs(n + 1, 0), bs(n + 1, 0);
cs[0] = bs[0] = 1;
Mint invBef = 1;
for (int i = 0; i < n; ++i) {
++m;
Mint dif = as[i];
for (int j = 1; j < d + 1; ++j) dif += cs[j] * as[i - j];
if (dif.x != 0) {
auto csDup = cs;
const Mint r = dif * invBef;
for (int j = m; j < n; ++j) cs[j] -= r * bs[j - m];
if (2 * d <= i) {
d = i + 1 - d;
m = 0;
bs = csDup;
invBef = dif.inv();
}
}
}
cs.resize(d + 1);
return cs;
}
// x^e mod rev(cs)
vector<Mint> powerRev(const vector<Mint> &cs, Int e) {
assert(!cs.empty());
assert(cs[0] == 1);
const int d = (int)cs.size() - 1;
if (d == 0) return {};
if (d == 1) return {(-cs[1]).pow(e)};
auto mul = [&](const vector<Mint> &fs, const vector<Mint> &gs) {
vector<Mint> hs(d + d - 1, 0);
for (int i = 0; i < d; ++i) for (int j = 0; j < d; ++j) {
hs[i + j] += fs[i] * gs[j];
}
for (int i = d + d - 1; --i >= d; ) {
for (int j = 1; j <= d; ++j) {
hs[i - j] -= cs[j] * hs[i];
}
}
hs.resize(d);
return hs;
};
vector<Mint> xs(d, 0), ys(d, 0);
xs[1] = 1;
ys[0] = 1;
for (; ; xs = mul(xs, xs)) {
if (e & 1) ys = mul(ys, xs);
if (!(e >>= 1)) break;
}
return ys;
}
Mint linearRecurrenceAt(const vector<Mint> &as, const vector<Mint> &cs, Int e) {
assert(!cs.empty());
assert(cs[0] == 1);
const int d = (int)cs.size() - 1;
assert((int)as.size() >= d);
const auto fs = powerRev(cs, e);
Mint ans = 0;
for (int i = 0; i < d; ++i) {
ans += fs[i] * as[i];
}
return ans;
}
constexpr int M = 310;
int main() {
Int K, L, R;
for (; ~scanf("%lld%lld%lld", &K, &L, &R); ) {
vector<Mint> as(M), bs(M);
as[0] = 1;
for (int i = 0; i < M - 1; ++i) as[i + 1] = K * as[i] + Mint(i).pow(K) + Mint(K).pow(i);
for (int i = 0; i < M - 1; ++i) bs[i + 1] = bs[i] + as[i];
const auto cs = findLinearRecurrence(bs);
cerr<<"|cs| = "<<cs.size()<<endl;
Mint ans = 0;
ans += linearRecurrenceAt(bs, cs, R + 1);
ans -= linearRecurrenceAt(bs, cs, L);
printf("%u\n", ans.x);
}
return 0;
}