結果
| 問題 |
No.3182 recurrence relation’s intersection sum
|
| コンテスト | |
| ユーザー |
Nachia
|
| 提出日時 | 2025-06-13 21:51:38 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 2,000 ms |
| コード長 | 7,156 bytes |
| コンパイル時間 | 1,228 ms |
| コンパイル使用メモリ | 87,180 KB |
| 実行使用メモリ | 7,844 KB |
| 最終ジャッジ日時 | 2025-06-13 21:51:41 |
| 合計ジャッジ時間 | 2,554 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 40 |
ソースコード
#ifdef NACHIA
#define _GLIBCXX_DEBUG
#else
#define NDEBUG
#endif
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
using i64 = long long;
using u64 = unsigned long long;
#define rep(i,n) for(i64 i=0; i<i64(n); i++)
const i64 INF = 1001001001001001001;
template<typename A> void chmin(A& l, const A& r){ if(r < l) l = r; }
template<typename A> void chmax(A& l, const A& r){ if(l < r) l = r; }
using namespace std;
#include <utility>
#include <cassert>
namespace nachia{
// ax + by = gcd(a,b)
// return ( x, - )
std::pair<long long, long long> ExtGcd(long long a, long long b){
long long x = 1, y = 0;
while(b){
long long u = a / b;
std::swap(a-=b*u, b);
std::swap(x-=y*u, y);
}
return std::make_pair(x, a);
}
} // namespace nachia
namespace nachia{
template<unsigned int MOD>
struct StaticModint{
private:
using u64 = unsigned long long;
unsigned int x;
public:
using my_type = StaticModint;
template< class Elem >
static Elem safe_mod(Elem x){
if(x < 0){
if(0 <= x+MOD) return x + MOD;
return MOD - ((-(x+MOD)-1) % MOD + 1);
}
return x % MOD;
}
StaticModint() : x(0){}
StaticModint(const my_type& a) : x(a.x){}
StaticModint& operator=(const my_type&) = default;
template< class Elem >
StaticModint(Elem v) : x(safe_mod(v)){}
unsigned int operator*() const { return x; }
my_type& operator+=(const my_type& r) { auto t = x + r.x; if(t >= MOD) t -= MOD; x = t; return *this; }
my_type operator+(const my_type& r) const { my_type res = *this; return res += r; }
my_type& operator-=(const my_type& r) { auto t = x + MOD - r.x; if(t >= MOD) t -= MOD; x = t; return *this; }
my_type operator-(const my_type& r) const { my_type res = *this; return res -= r; }
my_type operator-() const noexcept { my_type res = *this; res.x = ((res.x == 0) ? 0 : (MOD - res.x)); return res; }
my_type& operator*=(const my_type& r){ x = (u64)x * r.x % MOD; return *this; }
my_type operator*(const my_type& r) const { my_type res = *this; return res *= r; }
bool operator==(const my_type& r) const { return x == r.x; }
my_type pow(unsigned long long i) const {
my_type a = *this, res = 1;
while(i){ if(i & 1){ res *= a; } a *= a; i >>= 1; }
return res;
}
my_type inv() const { return my_type(ExtGcd(x, MOD).first); }
unsigned int val() const { return x; }
int hval() const { return int(x > MOD/2 ? x - MOD : x); }
static constexpr unsigned int mod() { return MOD; }
static my_type raw(unsigned int val) { auto res = my_type(); res.x = val; return res; }
my_type& operator/=(const my_type& r){ return operator*=(r.inv()); }
my_type operator/(const my_type& r) const { return operator*(r.inv()); }
};
} // namespace nachia
using Modint = nachia::StaticModint<998244353>;
namespace nachia{
template<class Modint>
class Comb{
private:
std::vector<Modint> F;
std::vector<Modint> iF;
public:
void extend(int newN){
int prevN = (int)F.size() - 1;
if(prevN >= newN) return;
F.resize(newN+1);
iF.resize(newN+1);
for(int i=prevN+1; i<=newN; i++) F[i] = F[i-1] * Modint::raw(i);
iF[newN] = F[newN].inv();
for(int i=newN; i>prevN; i--) iF[i-1] = iF[i] * Modint::raw(i);
}
Comb(int n = 1){
F.assign(2, Modint(1));
iF.assign(2, Modint(1));
extend(n);
}
Modint factorial(int n) const { return F[n]; }
Modint invFactorial(int n) const { return iF[n]; }
Modint invOf(int n) const { return iF[n] * F[n-1]; }
Modint comb(int n, int r) const {
if(n < 0 || n < r || r < 0) return Modint(0);
return F[n] * iF[r] * iF[n-r];
}
Modint invComb(int n, int r) const {
if(n < 0 || n < r || r < 0) return Modint(0);
return iF[n] * F[r] * F[n-r];
}
Modint perm(int n, int r) const {
if(n < 0 || n < r || r < 0) return Modint(0);
return F[n] * iF[n-r];
}
Modint invPerm(int n, int r) const {
if(n < 0 || n < r || r < 0) return Modint(0);
return iF[n] * F[n-r];
}
Modint operator()(int n, int r) const { return comb(n,r); }
Modint parityToSign(long long x) const {
return Modint(x%2 == 0 ? 1 : -1);
}
};
} // namespace nachia
namespace nachia{
template<class Modint>
Modint PolynomialInterpolationOnePoint(
std::vector<Modint> f,
Modint x
) {
int n = f.size();
auto comb = nachia::Comb<Modint>(n);
Modint q = 1;
for(int i=n-1; i>=0; i--){
f[i] *= q * comb.invFactorial(n-1-i);
if((n-1-i)%2 == 1) f[i] = -f[i];
q *= x-Modint::raw(i);
}
q = 1;
Modint ans = 0;
for(int i=0; i<n; i++){
ans += f[i] * q * comb.invFactorial(i);
q *= x-Modint::raw(i);
}
return ans;
}
} // namespace nachia
namespace nachia{
// r.val() != 1
template<class Modint>
Modint GeometricPolynomialPrefixSumLimit(
std::vector<Modint> f,
Modint r
){
if(f.size() == 0) return Modint(0);
int d = f.size() - 1;
auto comb = nachia::Comb<Modint>(d+1);
if(r.val() == 0) return f[0];
Modint rp = 1;
std::vector<Modint> q(d+2);
for(int k=0; k<=d; k++){ q[k+1] = q[k] + (f[k] *= rp); rp *= r; }
if(r.val() == 1) return Modint(0);
Modint c = 0;
rp = 1;
int Z = d + 10;
for(int k=0; k<=d; k++){ c += comb(d+1,k) * rp * q[d-k+1]; rp *= -r; }
return c * (Modint(1)-r).inv().pow(d+1);
}
template<class Modint>
Modint GeometricPolynomialPrefixSum(
std::vector<Modint> f,
Modint r,
unsigned long long n
){
if(f.size() == 0 || n == 0) return Modint(0);
int d = f.size() - 1;
auto comb = nachia::Comb<Modint>(d+1);
if(r.val() == 0) return f[0];
Modint rp = 1;
std::vector<Modint> q(d+2);
for(int k=0; k<=d; k++){ q[k+1] = q[k] + f[k] * rp; rp *= r; }
if(r.val() == 1) return PolynomialInterpolationOnePoint(std::move(q), Modint(n));
Modint c = 0;
rp = 1;
for(int k=0; k<=d; k++){ c += comb(d+1,k) * rp * q[d-k+1]; rp *= -r; }
c *= (Modint(1)-r).inv().pow(d+1);
Modint rinv = r.inv();
rp = 1;
for(int i=0; i<=d; i++){ f[i] = (q[i+1] - c) * rp; rp *= rinv; }
return PolynomialInterpolationOnePoint(std::move(f), Modint(n-1)) * r.pow(n-1) + c;
}
} // namespace nachia
Modint f(i64 K, i64 N){
Modint n = N;
Modint k = K;
if(K == 1){
return n + n * (n-1) / 2 + n * (n-1) * (n-2) / 6;
}
vector<Modint> d(K+1);
rep(i,K+1) d[i] = Modint(i).pow(K);
vector<Modint> e(3);
rep(i,3) e[i] = k.inv() * i + 1;
Modint c1 = nachia::GeometricPolynomialPrefixSum<Modint>(d, 1, N);
Modint c2 = nachia::GeometricPolynomialPrefixSum<Modint>(d, k.inv(), N);
Modint c3 = nachia::GeometricPolynomialPrefixSum<Modint>(e, k, N);
return c3 + (c2 * k.pow(N-1) - c1) / (k - 1);
}
void testcase(){
i64 K, L, R; cin >> K >> L >> R;
auto ans = f(K, R+1) - f(K, L);
cout << ans.val() << "\n";
}
int main(){
ios::sync_with_stdio(false); cin.tie(nullptr);
testcase();
return 0;
}
Nachia