結果
問題 |
No.3182 recurrence relation’s intersection sum
|
ユーザー |
👑 ![]() |
提出日時 | 2025-06-13 21:51:38 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 7,156 bytes |
コンパイル時間 | 1,228 ms |
コンパイル使用メモリ | 87,180 KB |
実行使用メモリ | 7,844 KB |
最終ジャッジ日時 | 2025-06-13 21:51:41 |
合計ジャッジ時間 | 2,554 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 40 |
ソースコード
#ifdef NACHIA #define _GLIBCXX_DEBUG #else #define NDEBUG #endif #include <iostream> #include <string> #include <vector> #include <algorithm> using i64 = long long; using u64 = unsigned long long; #define rep(i,n) for(i64 i=0; i<i64(n); i++) const i64 INF = 1001001001001001001; template<typename A> void chmin(A& l, const A& r){ if(r < l) l = r; } template<typename A> void chmax(A& l, const A& r){ if(l < r) l = r; } using namespace std; #include <utility> #include <cassert> namespace nachia{ // ax + by = gcd(a,b) // return ( x, - ) std::pair<long long, long long> ExtGcd(long long a, long long b){ long long x = 1, y = 0; while(b){ long long u = a / b; std::swap(a-=b*u, b); std::swap(x-=y*u, y); } return std::make_pair(x, a); } } // namespace nachia namespace nachia{ template<unsigned int MOD> struct StaticModint{ private: using u64 = unsigned long long; unsigned int x; public: using my_type = StaticModint; template< class Elem > static Elem safe_mod(Elem x){ if(x < 0){ if(0 <= x+MOD) return x + MOD; return MOD - ((-(x+MOD)-1) % MOD + 1); } return x % MOD; } StaticModint() : x(0){} StaticModint(const my_type& a) : x(a.x){} StaticModint& operator=(const my_type&) = default; template< class Elem > StaticModint(Elem v) : x(safe_mod(v)){} unsigned int operator*() const { return x; } my_type& operator+=(const my_type& r) { auto t = x + r.x; if(t >= MOD) t -= MOD; x = t; return *this; } my_type operator+(const my_type& r) const { my_type res = *this; return res += r; } my_type& operator-=(const my_type& r) { auto t = x + MOD - r.x; if(t >= MOD) t -= MOD; x = t; return *this; } my_type operator-(const my_type& r) const { my_type res = *this; return res -= r; } my_type operator-() const noexcept { my_type res = *this; res.x = ((res.x == 0) ? 0 : (MOD - res.x)); return res; } my_type& operator*=(const my_type& r){ x = (u64)x * r.x % MOD; return *this; } my_type operator*(const my_type& r) const { my_type res = *this; return res *= r; } bool operator==(const my_type& r) const { return x == r.x; } my_type pow(unsigned long long i) const { my_type a = *this, res = 1; while(i){ if(i & 1){ res *= a; } a *= a; i >>= 1; } return res; } my_type inv() const { return my_type(ExtGcd(x, MOD).first); } unsigned int val() const { return x; } int hval() const { return int(x > MOD/2 ? x - MOD : x); } static constexpr unsigned int mod() { return MOD; } static my_type raw(unsigned int val) { auto res = my_type(); res.x = val; return res; } my_type& operator/=(const my_type& r){ return operator*=(r.inv()); } my_type operator/(const my_type& r) const { return operator*(r.inv()); } }; } // namespace nachia using Modint = nachia::StaticModint<998244353>; namespace nachia{ template<class Modint> class Comb{ private: std::vector<Modint> F; std::vector<Modint> iF; public: void extend(int newN){ int prevN = (int)F.size() - 1; if(prevN >= newN) return; F.resize(newN+1); iF.resize(newN+1); for(int i=prevN+1; i<=newN; i++) F[i] = F[i-1] * Modint::raw(i); iF[newN] = F[newN].inv(); for(int i=newN; i>prevN; i--) iF[i-1] = iF[i] * Modint::raw(i); } Comb(int n = 1){ F.assign(2, Modint(1)); iF.assign(2, Modint(1)); extend(n); } Modint factorial(int n) const { return F[n]; } Modint invFactorial(int n) const { return iF[n]; } Modint invOf(int n) const { return iF[n] * F[n-1]; } Modint comb(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return F[n] * iF[r] * iF[n-r]; } Modint invComb(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return iF[n] * F[r] * F[n-r]; } Modint perm(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return F[n] * iF[n-r]; } Modint invPerm(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return iF[n] * F[n-r]; } Modint operator()(int n, int r) const { return comb(n,r); } Modint parityToSign(long long x) const { return Modint(x%2 == 0 ? 1 : -1); } }; } // namespace nachia namespace nachia{ template<class Modint> Modint PolynomialInterpolationOnePoint( std::vector<Modint> f, Modint x ) { int n = f.size(); auto comb = nachia::Comb<Modint>(n); Modint q = 1; for(int i=n-1; i>=0; i--){ f[i] *= q * comb.invFactorial(n-1-i); if((n-1-i)%2 == 1) f[i] = -f[i]; q *= x-Modint::raw(i); } q = 1; Modint ans = 0; for(int i=0; i<n; i++){ ans += f[i] * q * comb.invFactorial(i); q *= x-Modint::raw(i); } return ans; } } // namespace nachia namespace nachia{ // r.val() != 1 template<class Modint> Modint GeometricPolynomialPrefixSumLimit( std::vector<Modint> f, Modint r ){ if(f.size() == 0) return Modint(0); int d = f.size() - 1; auto comb = nachia::Comb<Modint>(d+1); if(r.val() == 0) return f[0]; Modint rp = 1; std::vector<Modint> q(d+2); for(int k=0; k<=d; k++){ q[k+1] = q[k] + (f[k] *= rp); rp *= r; } if(r.val() == 1) return Modint(0); Modint c = 0; rp = 1; int Z = d + 10; for(int k=0; k<=d; k++){ c += comb(d+1,k) * rp * q[d-k+1]; rp *= -r; } return c * (Modint(1)-r).inv().pow(d+1); } template<class Modint> Modint GeometricPolynomialPrefixSum( std::vector<Modint> f, Modint r, unsigned long long n ){ if(f.size() == 0 || n == 0) return Modint(0); int d = f.size() - 1; auto comb = nachia::Comb<Modint>(d+1); if(r.val() == 0) return f[0]; Modint rp = 1; std::vector<Modint> q(d+2); for(int k=0; k<=d; k++){ q[k+1] = q[k] + f[k] * rp; rp *= r; } if(r.val() == 1) return PolynomialInterpolationOnePoint(std::move(q), Modint(n)); Modint c = 0; rp = 1; for(int k=0; k<=d; k++){ c += comb(d+1,k) * rp * q[d-k+1]; rp *= -r; } c *= (Modint(1)-r).inv().pow(d+1); Modint rinv = r.inv(); rp = 1; for(int i=0; i<=d; i++){ f[i] = (q[i+1] - c) * rp; rp *= rinv; } return PolynomialInterpolationOnePoint(std::move(f), Modint(n-1)) * r.pow(n-1) + c; } } // namespace nachia Modint f(i64 K, i64 N){ Modint n = N; Modint k = K; if(K == 1){ return n + n * (n-1) / 2 + n * (n-1) * (n-2) / 6; } vector<Modint> d(K+1); rep(i,K+1) d[i] = Modint(i).pow(K); vector<Modint> e(3); rep(i,3) e[i] = k.inv() * i + 1; Modint c1 = nachia::GeometricPolynomialPrefixSum<Modint>(d, 1, N); Modint c2 = nachia::GeometricPolynomialPrefixSum<Modint>(d, k.inv(), N); Modint c3 = nachia::GeometricPolynomialPrefixSum<Modint>(e, k, N); return c3 + (c2 * k.pow(N-1) - c1) / (k - 1); } void testcase(){ i64 K, L, R; cin >> K >> L >> R; auto ans = f(K, R+1) - f(K, L); cout << ans.val() << "\n"; } int main(){ ios::sync_with_stdio(false); cin.tie(nullptr); testcase(); return 0; }