結果
| 問題 |
No.3179 3 time mod
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-06-13 21:56:26 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 68 ms / 2,000 ms |
| コード長 | 3,437 bytes |
| コンパイル時間 | 196 ms |
| コンパイル使用メモリ | 82,896 KB |
| 実行使用メモリ | 68,532 KB |
| 最終ジャッジ日時 | 2025-06-14 01:41:39 |
| 合計ジャッジ時間 | 4,081 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 42 |
ソースコード
import typing
def _is_prime(n: int) -> bool:
'''
Reference:
M. Forisek and J. Jancina,
Fast Primality Testing for Integers That Fit into a Machine Word
'''
if n <= 1:
return False
if n == 2 or n == 7 or n == 61:
return True
if n % 2 == 0:
return False
d = n - 1
while d % 2 == 0:
d //= 2
for a in (2, 7, 61):
t = d
y = pow(a, t, n)
while t != n - 1 and y != 1 and y != n - 1:
y = y * y % n
t <<= 1
if y != n - 1 and t % 2 == 0:
return False
return True
def _inv_gcd(a: int, b: int) -> typing.Tuple[int, int]:
a %= b
if a == 0:
return (b, 0)
# Contracts:
# [1] s - m0 * a = 0 (mod b)
# [2] t - m1 * a = 0 (mod b)
# [3] s * |m1| + t * |m0| <= b
s = b
t = a
m0 = 0
m1 = 1
while t:
u = s // t
s -= t * u
m0 -= m1 * u # |m1 * u| <= |m1| * s <= b
# [3]:
# (s - t * u) * |m1| + t * |m0 - m1 * u|
# <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
# = s * |m1| + t * |m0| <= b
s, t = t, s
m0, m1 = m1, m0
# by [3]: |m0| <= b/g
# by g != b: |m0| < b/g
if m0 < 0:
m0 += b // s
return (s, m0)
def _primitive_root(m: int) -> int:
if m == 2:
return 1
if m == 167772161:
return 3
if m == 469762049:
return 3
if m == 754974721:
return 11
if m == 998244353:
return 3
divs = [2] + [0] * 19
cnt = 1
x = (m - 1) // 2
while x % 2 == 0:
x //= 2
i = 3
while i * i <= x:
if x % i == 0:
divs[cnt] = i
cnt += 1
while x % i == 0:
x //= i
i += 2
if x > 1:
divs[cnt] = x
cnt += 1
g = 2
while True:
for i in range(cnt):
if pow(g, (m - 1) // divs[i], m) == 1:
break
else:
return g
g += 1
def crt(r: typing.List[int], m: typing.List[int]) -> typing.Tuple[int, int]:
assert len(r) == len(m)
# Contracts: 0 <= r0 < m0
r0 = 0
m0 = 1
for r1, m1 in zip(r, m):
assert 1 <= m1
r1 %= m1
if m0 < m1:
r0, r1 = r1, r0
m0, m1 = m1, m0
if m0 % m1 == 0:
if r0 % m1 != r1:
return (0, 0)
continue
# assume: m0 > m1, lcm(m0, m1) >= 2 * max(m0, m1)
'''
(r0, m0), (r1, m1) -> (r2, m2 = lcm(m0, m1));
r2 % m0 = r0
r2 % m1 = r1
-> (r0 + x*m0) % m1 = r1
-> x*u0*g % (u1*g) = (r1 - r0) (u0*g = m0, u1*g = m1)
-> x = (r1 - r0) / g * inv(u0) (mod u1)
'''
# im = inv(u0) (mod u1) (0 <= im < u1)
g, im = _inv_gcd(m0, m1)
u1 = m1 // g
# |r1 - r0| < (m0 + m1) <= lcm(m0, m1)
if (r1 - r0) % g:
return (0, 0)
# u1 * u1 <= m1 * m1 / g / g <= m0 * m1 / g = lcm(m0, m1)
x = (r1 - r0) // g % u1 * im % u1
'''
|r0| + |m0 * x|
< m0 + m0 * (u1 - 1)
= m0 + m0 * m1 / g - m0
= lcm(m0, m1)
'''
r0 += x * m0
m0 *= u1 # -> lcm(m0, m1)
if r0 < 0:
r0 += m0
return (r0, m0)
n,p,q,r,a,b,c=map(int,open(0).read().split())
m=p*q*r
a,b=crt([a,b,c],[p,q,r])
t=n//b
if t*b+a<=n:
t+=1
print(t)