結果

問題 No.3182 recurrence relation’s intersection sum
ユーザー Moss_Local
提出日時 2025-06-13 22:21:17
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 340 ms / 2,000 ms
コード長 8,157 bytes
コンパイル時間 11,881 ms
コンパイル使用メモリ 399,208 KB
実行使用メモリ 7,844 KB
最終ジャッジ日時 2025-06-13 22:21:44
合計ジャッジ時間 17,369 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 40
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: variable does not need to be mutable
   --> src/main.rs:109:9
    |
109 |     let mut vec: Vec<i64> = read_vec();
    |         ----^^^
    |         |
    |         help: remove this `mut`
    |
    = note: `#[warn(unused_mut)]` on by default

warning: variable does not need to be mutable
   --> src/main.rs:115:9
    |
115 |     let mut vec: Vec<i64> = read_vec();
    |         ----^^^
    |         |
    |         help: remove this `mut`

warning: variable does not need to be mutable
   --> src/main.rs:120:9
    |
120 |     let mut vec: Vec<usize> = read_vec();
    |         ----^^^
    |         |
    |         help: remove this `mut`

warning: variable does not need to be mutable
   --> src/main.rs:125:9
    |
125 |     let mut vec: Vec<usize> = read_vec();
    |         ----^^^
    |         |
    |         help: remove this `mut`

warning: variable `K` should have a snake case name
   --> src/main.rs:150:17
    |
150 |             let K = self.n();
    |                 ^ help: convert the identifier to snake case (notice the capitalization): `k`
    |
    = note: `#[warn(non_snake_case)]` on by default

warning: variable `M` should have a snake case name
   --> src/main.rs:151:17
    |
151 |             let M = self.m();
    |                 ^ help: convert the identifier to snake case: `m`

warning: variable `N` should have a snake case name
   --> src/main.rs:152:17
    |
152 |             let N = other.n();
    |                 ^ help: convert the identifier to snake case: `n`

warning: variable `K` should have a snake case name
   --> src/main.rs:214:17
    |
214 |             let K = self.n();
    |                 ^ help: convert the identifier to snake case (notice the capitalization): `k`

warning: variable `M` should have a snake case name
   --> src/main.rs:215:17
    |
215 |             let M = self.m();
    |                 ^ help: convert the identifier to snake case: `m`

warning: variable `N` should have a snake case name
   --> src

ソースコード

diff #

// -*- coding:utf-8-unix -*-
// #![feature(map_first_last)]
#![allow(dead_code)]
#![allow(unused_imports)]
#![allow(unused_macros)]

use std::cmp::*;
use std::collections::*;
use std::fmt::*;
use std::hash::*;
use std::io::BufRead;
use std::iter::FromIterator;
use std::*;

const INF: i64 = 1223372036854775807;
const UINF: usize = INF as usize;
const LINF: i64 = 2147483647;
const INF128: i128 = 1223372036854775807000000000000;
const MOD1: i64 = 1000000007;
const MOD9: i64 = 998244353;
const MOD: i64 = MOD9;
const UMOD: usize = MOD as usize;
const M_PI: f64 = 3.14159265358979323846;

macro_rules! p {
    ($x:expr) => {
        //if expr
        println!("{}", $x);
    };
}

macro_rules! vp {
    // vector print separate with space
    ($x:expr) => {
        println!(
            "{}",
            $x.iter()
                .map(|x| x.to_string())
                .collect::<Vec<_>>()
                .join(" ")
        );
    };
}

macro_rules! d {
    ($x:expr) => {
        eprintln!("{:?}", $x);
    };
}
macro_rules! yn {
    ($val:expr) => {
        if $val {
            println!("Yes");
        } else {
            println!("No");
        }
    };
}

macro_rules! map{
    // declear btreemap
    ($($key:expr => $val:expr),*) => {
        {
            let mut map = ::std::collections::BTreeMap::new();
            $(
                map.insert($key, $val);
            )*
            map
        }
    };
}

macro_rules! set{
    // declear btreemap
    ($($key:expr),*) => {
        {
            let mut set = ::std::collections::BTreeSet::new();
            $(
                set.insert($key);
            )*
            set
        }
    };
}

//input output
#[allow(dead_code)]
fn read<T: std::str::FromStr>() -> T {
    let mut s = String::new();
    std::io::stdin().read_line(&mut s).ok();
    s.trim().parse().ok().unwrap()
}

#[allow(dead_code)]
fn read_vec<T: std::str::FromStr>() -> Vec<T> {
    read::<String>()
        .split_whitespace()
        .map(|e| e.parse().ok().unwrap())
        .collect()
}

#[allow(dead_code)]
fn read_mat<T: std::str::FromStr>(n: u32) -> Vec<Vec<T>> {
    (0..n).map(|_| read_vec()).collect()
}

#[allow(dead_code)]
fn readii() -> (i64, i64) {
    let mut vec: Vec<i64> = read_vec();
    (vec[0], vec[1])
}

#[allow(dead_code)]
fn readiii() -> (i64, i64, i64) {
    let mut vec: Vec<i64> = read_vec();
    (vec[0], vec[1], vec[2])
}
#[allow(dead_code)]
fn readuu() -> (usize, usize) {
    let mut vec: Vec<usize> = read_vec();
    (vec[0], vec[1])
}

fn readuuu() -> (usize, usize, usize) {
    let mut vec: Vec<usize> = read_vec();
    (vec[0], vec[1], vec[2])
}

pub mod matrix {
    #[derive(Clone)]
    pub struct Matrix {
        pub v: Vec<Vec<i64>>,
    }
    impl Matrix {
        pub fn identity(n: usize) -> Self {
            let mut v = vec![vec![0; n]; n];
            for i in 0..n {
                v[i][i] = 1;
            }
            Matrix { v: v }
        }
        pub fn m(&self) -> usize {
            self.v.len()
        }
        pub fn n(&self) -> usize {
            self.v[0].len()
        }
        pub fn mul_rem(&self, other: &Self, mo: i64) -> Self {
            assert!(self.n() == other.m());
            let K = self.n();
            let M = self.m();
            let N = other.n();
            let mut r = vec![vec![0; N]; M];
            for i in 0..M {
                for j in 0..N {
                    let mut v = 0;
                    for k in 0..K {
                        v += self.v[i][k] * other.v[k][j] % mo;
                        v %= mo;
                    }
                    r[i][j] = v;
                }
            }
            Matrix { v: r }
        }
        pub fn pow(&self, k: u64, mo: i64) -> Self {
            assert!(self.m() == self.n());
            let mut k = k;
            let mut x = Self::identity(self.m());
            let mut y = self.clone();
            while k > 0 {
                if k & 1 > 0 {
                    x = y.mul_rem(&x, mo);
                    x %= mo;
                }
                y = y.mul_rem(&y, mo);
                y %= mo;
                k >>= 1;
            }
            x
        }
    }

    use std::ops::*;

    impl Add for Matrix {
        type Output = Self;
        fn add(self, other: Self) -> Self {
            let mut r = self.v.clone();
            for i in 0..self.m() {
                for j in 0..self.n() {
                    r[i][j] += other.v[i][j];
                }
            }
            Matrix { v: r }
        }
    }
    impl Sub for Matrix {
        type Output = Self;
        fn sub(self, other: Self) -> Self {
            let mut r = self.v.clone();
            for i in 0..self.m() {
                for j in 0..self.n() {
                    r[i][j] -= other.v[i][j];
                }
            }
            Matrix { v: r }
        }
    }
    impl Mul for Matrix {
        type Output = Self;
        fn mul(self, other: Self) -> Self {
            assert!(self.n() == other.m());
            let K = self.n();
            let M = self.m();
            let N = other.n();
            let mut r = vec![vec![0; N]; M];
            for i in 0..M {
                for j in 0..N {
                    let mut v = 0;
                    for k in 0..K {
                        v += self.v[i][k] * other.v[k][j]; // mod over flow?
                    }
                    r[i][j] = v;
                }
            }
            Matrix { v: r }
        }
    }
    impl Rem<i64> for Matrix {
        type Output = Self;
        fn rem(self, mo: i64) -> Self {
            let mut r = self.v.clone();
            for i in 0..self.m() {
                for j in 0..self.n() {
                    r[i][j] %= mo;
                }
            }
            Matrix { v: r }
        }
    }
    impl RemAssign<i64> for Matrix {
        fn rem_assign(&mut self, mo: i64) {
            for i in 0..self.m() {
                for j in 0..self.n() {
                    self.v[i][j] %= mo;
                }
            }
        }
    }
}
fn matrix_pow(a: &Vec<i64>, mat: &Vec<Vec<i64>>, mut k: u64, mo: i64) -> Vec<i64> {
    let n = a.len();
    let mut res = vec![vec![0i64; n]; n];
    for i in 0..n {
        res[i][i] = 1;
    }
    let mut m = mat.clone();
    while k > 0 {
        if k & 1 == 1 {
            res = mat_mul(&res, &m, mo);
        }
        m = mat_mul(&m, &m, mo);
        k >>= 1;
    }
    let mut va = vec![0i64; n];
    for i in 0..n {
        for j in 0..n {
            va[i] = (va[i] + res[i][j] * a[j] % mo) % mo;
        }
    }
    va
}

fn mat_mul(a: &Vec<Vec<i64>>, b: &Vec<Vec<i64>>, mo: i64) -> Vec<Vec<i64>> {
    let n = a.len();
    let mut c = vec![vec![0i64; n]; n];
    for i in 0..n {
        for k in 0..n {
            let aik = a[i][k];
            if aik == 0 {
                continue;
            }
            for j in 0..n {
                c[i][j] = (c[i][j] + aik * b[k][j] % mo) % mo;
            }
        }
    }
    c
}

fn main() {
    let (k, l, r) = readuuu();
    let d = k + 4;
    let idx_exp = k + 1;
    let idx_a = k + 2;
    let idx_s = k + 3;
    // 二項係数
    let mut cmb = vec![vec![0i64; k + 1]; k + 1];
    for i in 0..=k {
        cmb[i][0] = 1;
        for j in 1..=i {
            if j == i {
                cmb[i][j] = 1;
            } else {
                cmb[i][j] = (cmb[i - 1][j - 1] + cmb[i - 1][j]) % MOD;
            }
        }
    }
    // 変換行列 T の構築
    let mut mat = vec![vec![0i64; d]; d];
    for i in 0..=k {
        for j in 0..=i {
            mat[i][j] = cmb[i][j];
        }
    }
    mat[idx_exp][idx_exp] = (k as i64) % MOD;
    mat[idx_a][idx_a] = (k as i64) % MOD;
    mat[idx_a][k] = 1; // n^K term
    mat[idx_a][idx_exp] = 1;
    mat[idx_s][idx_s] = 1;
    mat[idx_s][idx_a] = 1;
    let mut v0 = vec![0i64; d];
    v0[0] = 1;
    v0[idx_exp] = 1;
    v0[idx_a] = 1;
    let v_l = matrix_pow(&v0, &mat, (l) as u64, MOD);
    let v_r1 = matrix_pow(&v0, &mat, (r + 1) as u64, MOD);
    let s_r1 = v_r1[idx_s] % MOD;
    let s_l = v_l[idx_s] % MOD;
    let ans = (s_r1 - s_l).rem_euclid(MOD);
    println!("{}", ans);
}
0