結果
問題 |
No.3182 recurrence relation’s intersection sum
|
ユーザー |
|
提出日時 | 2025-06-13 22:22:03 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 424 ms / 2,000 ms |
コード長 | 8,482 bytes |
コンパイル時間 | 5,348 ms |
コンパイル使用メモリ | 335,808 KB |
実行使用メモリ | 8,672 KB |
最終ジャッジ日時 | 2025-06-13 22:22:16 |
合計ジャッジ時間 | 12,652 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 40 |
ソースコード
#include <bits/stdc++.h> #include <atcoder/all> using namespace std; using namespace atcoder; istream &operator>>(istream &is, modint &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint &a) { return os << a.val(); } istream &operator>>(istream &is, modint998244353 &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint998244353 &a) { return os << a.val(); } istream &operator>>(istream &is, modint1000000007 &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint1000000007 &a) { return os << a.val(); } typedef long long ll; typedef vector<vector<int>> Graph; typedef pair<int, int> pii; typedef pair<ll, ll> pll; #define FOR(i,l,r) for (int i = l;i < (int)(r); i++) #define rep(i,n) for (int i = 0;i < (int)(n); i++) #define all(x) x.begin(), x.end() #define rall(x) x.rbegin(), x.rend() #define my_sort(x) sort(x.begin(), x.end()) #define my_max(x) *max_element(all(x)) #define my_min(x) *min_element(all(x)) template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } const int INF = (1<<30) - 1; const ll LINF = (1LL<<62) - 1; const double PI = acos(-1); vector<int> di = {1,0,-1,0}; vector<int> dj = {0,1,0,-1}; #ifdef LOCAL # include <debug_print.hpp> # define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__) #else # define debug(...) (static_cast<void>(0)) #endif // https://youtu.be/ylWYSurx10A?t=2352 template<typename T> struct Matrix{ int h, w; vector<vector<T>> d; Matrix(): h(0), w(0) {} Matrix(int h, int w, T val=0): h(h), w(w), d(h, vector<T>(w,val)) {} Matrix(int n, T val=0): h(n), w(n), d(n, vector<T>(n,val)) {} Matrix& unit(){ assert(h == w); rep(i,h) d[i][i] = 1; return *this; } const vector<T>& operator[](int i) const { return d[i];} vector<T>& operator[](int i) { return d[i];} Matrix operator+(const Matrix& a) const { assert(h == a.h && w == a.w); Matrix r(h, w); rep(i,h)rep(j,w){ r[i][j] = d[i][j] + a[i][j]; } return r; } Matrix &operator+=(const Matrix& a) const { assert(h == a.h && w == a.w); rep(i,h)rep(j,w){ (*this)[i][j] += a[i][j]; } return (*this); } Matrix operator-(const Matrix& a) const { assert(h == a.h && w == a.w); Matrix r(h, w); rep(i,h)rep(j,w){ r[i][j] = d[i][j] - a[i][j]; } return r; } Matrix &operator-=(const Matrix& a) const { assert(h == a.h && w == a.w); rep(i,h)rep(j,w){ (*this)[i][j] -= a[i][j]; } return (*this); } Matrix operator*(const Matrix& a) const { assert(w == a.h); Matrix r(h, a.w); rep(i,h)rep(k,w)rep(j,a.w){ r[i][j] += d[i][k] * a[k][j]; } return r; } Matrix &operator*=(const Matrix& a) const { assert(w == a.h); vector<vector<T>> nd(h, vector<T>(w)); rep(i,h)rep(k,w)rep(j,a.w){ nd[i][j] += (*this)[i][k] * a[k][j]; } d = move(nd); return (*this); } vector<T> operator*(const vector<T> &a) const { // res[i] = sum{ M[i][j] * x[j] } (j = 0 ... h-1) assert(w == (int)a.size()); vector<T> r(h); rep(i,h)rep(j,w){ r[i] += (*this)[i][j] * a[j]; } return r; } Matrix operator*(const T &a) const { Matrix r(h, w); rep(i,h)rep(j,w){ r[i][j] = (*this)[i][j] * a; } return r; } Matrix &operator*=(const T &a) const { vector<vector<T>> nd(h, vector<T>(w)); rep(i,h)rep(j,w){ nd[i][j] = (*this)[i][j] * a; } d = move(nd); return (*this); } bool operator==(const Matrix &a){ if(h != a.h || w != a.w) return false; rep(i,h)rep(j,w){ if((*this)[i][j] != a[i][j]) return false; } return true; } friend ostream &operator<<(ostream &os, Matrix &a){ rep(i,a.h){ os << (i == 0 ? '[' : ' '); rep(j,a.w) os << (j == 0 ? '[' : ' ') << a[i][j] << (j == a.w - 1 ? "]" : ","); os << (i == a.h - 1 ? "]" : ",") << '\n'; } return os; } pair<int, int> shape() {return {this->h, this->w};} static Matrix eye(int n){ Matrix mat(n, n); mat.unit(); return mat; } Matrix pow(long long t) const { debug(t); assert(h == w); if(t == 0) Matrix(h, h).unit(); if(t == 1) return *this; Matrix r = pow(t >> 1); r = r * r; if(t & 1) r = r * (*this); return r; } T det(){ assert(h == w); vector<vector<T>> dc = d; T res = 1; rep(k,h){ for(int i = k; i < h; i++){ if(dc[i][k] == 0) continue; if(i != k){ swap(dc[i], dc[k]); res = -res; } } if(dc[k][k] == 0) return 0; res *= dc[k][k]; T inv = T(1) / dc[k][k]; rep(j,h) dc[k][j] *= inv; for(int i = k + 1; i < h; i++){ T c = dc[i][k]; for(int j = k; j < h; j++) dc[i][j] -= dc[k][j] * c; } } return res; } Matrix inv(){ assert(h == w); int n = h; // (A E) -> (E, invA) Matrix AE(n, 2 * n); rep(i,n){ rep(j,n) AE[i][j] = d[i][j]; AE[i][i + n] = 1; } rep(r, n){ int pivot = -1; for(int i = r; i < n; i++){ if(AE[i][r] != 0){ pivot = i; break; } } // 逆行列が存在しない if(pivot == -1) return Matrix(); swap(AE[r], AE[pivot]); for(int j = r + 1; j < 2 * n; j++) AE[r][j] /= AE[r][r]; rep(i,n)if(i != r){ for(int j = r + 1; j < 2 * n; j++){ AE[i][j] -= AE[i][r] * AE[r][j]; } } } Matrix r(n, n); rep(i,n)rep(j,n) r[i][j] = AE[i][j + n]; return r; } // !! not verify !! vector<T> linear_equation(vector<T> b){ Matrix invA = (*this).inv(); if(invA.h == 0) return {}; return invA * b; } }; // Matrix<T> mat(h, w); // Matrix<T> identity = Matrix<T>::eye(n); // pii hw = mat.shape(); // T determinant = A.det(); // Matrix<T> powA = A.pow(K); // Matrix<T> invA = A.pow(K); // vector<T> x = A.linear_equation(b); using mint = modint998244353; //https://drken1215.hatenablog.com/entry/2018/06/08/210000 //COMinit()を忘れない!!! const ll NMAX = 202020; const ll MOD = 998244353; //const int MOD = 1e9+7; ll fac[NMAX],finv[NMAX],inv[NMAX]; void COMinit(){ fac[0] = fac[1] = 1LL; finv[0] = finv[1] = 1LL; inv[1] = 1LL; for (int i=2;i<NMAX;i++){ fac[i] = fac[i-1] * i % MOD; inv[i] = MOD - inv[MOD%i] * (MOD/i) % MOD; finv[i] = finv[i-1] * inv[i] % MOD; } } ll nCr(int n,int k){ if (n<k) return 0LL; if (n < 0 || k < 0) return 0LL; return fac[n] * (finv[k] * finv[n-k] % MOD) % MOD; } ll nPr(int n,int k){ if (n<k) return 0LL; if (n < 0 || k < 0) return 0LL; return fac[n] * finv[n-k] % MOD; } ll nHr(int n,int r){ return nCr(n+r-1,r); } int main(){ cin.tie(0); ios_base::sync_with_stdio(false); COMinit(); ll K, L, R; cin >> K >> L >> R; Matrix<mint> M(K + 4, K + 4); M[0][0] = 1; M[0][1] = 1; M[1][1] = K; M[1][2] = 1; M[1][3] = 1; M[2][2] = K; int row = 3; for(int x = K; x >= 0; x--){ for(int i = 0; i <= x; i++){ M[row][i + row] = nCr(x, i); } row++; } // debug(M.d); Matrix<mint> MR = M.pow(R + 1); Matrix<mint> ML = (L > 0 ? M.pow(L) : M.unit()); debug(M.d, MR.d, ML.d); vector<mint> B(K + 4); B[0] = 0; B[1] = 1; B[2] = 1; B[K + 3] = 1; mint Sl = 0; rep(i, K + 4) Sl += ML[0][i] * B[i]; mint Sr = 0; rep(i, K + 4) Sr += MR[0][i] * B[i]; cout << Sr - Sl + (L == 0) << endl; }