結果
| 問題 |
No.3182 recurrence relation’s intersection sum
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-06-13 22:22:03 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 424 ms / 2,000 ms |
| コード長 | 8,482 bytes |
| コンパイル時間 | 5,348 ms |
| コンパイル使用メモリ | 335,808 KB |
| 実行使用メモリ | 8,672 KB |
| 最終ジャッジ日時 | 2025-06-13 22:22:16 |
| 合計ジャッジ時間 | 12,652 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 40 |
ソースコード
#include <bits/stdc++.h>
#include <atcoder/all>
using namespace std;
using namespace atcoder;
istream &operator>>(istream &is, modint &a) { long long v; is >> v; a = v; return is; }
ostream &operator<<(ostream &os, const modint &a) { return os << a.val(); }
istream &operator>>(istream &is, modint998244353 &a) { long long v; is >> v; a = v; return is; }
ostream &operator<<(ostream &os, const modint998244353 &a) { return os << a.val(); }
istream &operator>>(istream &is, modint1000000007 &a) { long long v; is >> v; a = v; return is; }
ostream &operator<<(ostream &os, const modint1000000007 &a) { return os << a.val(); }
typedef long long ll;
typedef vector<vector<int>> Graph;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
#define FOR(i,l,r) for (int i = l;i < (int)(r); i++)
#define rep(i,n) for (int i = 0;i < (int)(n); i++)
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define my_sort(x) sort(x.begin(), x.end())
#define my_max(x) *max_element(all(x))
#define my_min(x) *min_element(all(x))
template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }
const int INF = (1<<30) - 1;
const ll LINF = (1LL<<62) - 1;
const double PI = acos(-1);
vector<int> di = {1,0,-1,0};
vector<int> dj = {0,1,0,-1};
#ifdef LOCAL
# include <debug_print.hpp>
# define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
# define debug(...) (static_cast<void>(0))
#endif
// https://youtu.be/ylWYSurx10A?t=2352
template<typename T>
struct Matrix{
int h, w;
vector<vector<T>> d;
Matrix(): h(0), w(0) {}
Matrix(int h, int w, T val=0): h(h), w(w), d(h, vector<T>(w,val)) {}
Matrix(int n, T val=0): h(n), w(n), d(n, vector<T>(n,val)) {}
Matrix& unit(){
assert(h == w);
rep(i,h) d[i][i] = 1;
return *this;
}
const vector<T>& operator[](int i) const { return d[i];}
vector<T>& operator[](int i) { return d[i];}
Matrix operator+(const Matrix& a) const {
assert(h == a.h && w == a.w);
Matrix r(h, w);
rep(i,h)rep(j,w){
r[i][j] = d[i][j] + a[i][j];
}
return r;
}
Matrix &operator+=(const Matrix& a) const {
assert(h == a.h && w == a.w);
rep(i,h)rep(j,w){
(*this)[i][j] += a[i][j];
}
return (*this);
}
Matrix operator-(const Matrix& a) const {
assert(h == a.h && w == a.w);
Matrix r(h, w);
rep(i,h)rep(j,w){
r[i][j] = d[i][j] - a[i][j];
}
return r;
}
Matrix &operator-=(const Matrix& a) const {
assert(h == a.h && w == a.w);
rep(i,h)rep(j,w){
(*this)[i][j] -= a[i][j];
}
return (*this);
}
Matrix operator*(const Matrix& a) const {
assert(w == a.h);
Matrix r(h, a.w);
rep(i,h)rep(k,w)rep(j,a.w){
r[i][j] += d[i][k] * a[k][j];
}
return r;
}
Matrix &operator*=(const Matrix& a) const {
assert(w == a.h);
vector<vector<T>> nd(h, vector<T>(w));
rep(i,h)rep(k,w)rep(j,a.w){
nd[i][j] += (*this)[i][k] * a[k][j];
}
d = move(nd);
return (*this);
}
vector<T> operator*(const vector<T> &a) const {
// res[i] = sum{ M[i][j] * x[j] } (j = 0 ... h-1)
assert(w == (int)a.size());
vector<T> r(h);
rep(i,h)rep(j,w){
r[i] += (*this)[i][j] * a[j];
}
return r;
}
Matrix operator*(const T &a) const {
Matrix r(h, w);
rep(i,h)rep(j,w){
r[i][j] = (*this)[i][j] * a;
}
return r;
}
Matrix &operator*=(const T &a) const {
vector<vector<T>> nd(h, vector<T>(w));
rep(i,h)rep(j,w){
nd[i][j] = (*this)[i][j] * a;
}
d = move(nd);
return (*this);
}
bool operator==(const Matrix &a){
if(h != a.h || w != a.w) return false;
rep(i,h)rep(j,w){
if((*this)[i][j] != a[i][j]) return false;
}
return true;
}
friend ostream &operator<<(ostream &os, Matrix &a){
rep(i,a.h){
os << (i == 0 ? '[' : ' ');
rep(j,a.w) os << (j == 0 ? '[' : ' ') << a[i][j] << (j == a.w - 1 ? "]" : ",");
os << (i == a.h - 1 ? "]" : ",") << '\n';
}
return os;
}
pair<int, int> shape() {return {this->h, this->w};}
static Matrix eye(int n){
Matrix mat(n, n);
mat.unit();
return mat;
}
Matrix pow(long long t) const {
debug(t);
assert(h == w);
if(t == 0) Matrix(h, h).unit();
if(t == 1) return *this;
Matrix r = pow(t >> 1);
r = r * r;
if(t & 1) r = r * (*this);
return r;
}
T det(){
assert(h == w);
vector<vector<T>> dc = d;
T res = 1;
rep(k,h){
for(int i = k; i < h; i++){
if(dc[i][k] == 0) continue;
if(i != k){
swap(dc[i], dc[k]);
res = -res;
}
}
if(dc[k][k] == 0) return 0;
res *= dc[k][k];
T inv = T(1) / dc[k][k];
rep(j,h) dc[k][j] *= inv;
for(int i = k + 1; i < h; i++){
T c = dc[i][k];
for(int j = k; j < h; j++) dc[i][j] -= dc[k][j] * c;
}
}
return res;
}
Matrix inv(){
assert(h == w);
int n = h;
// (A E) -> (E, invA)
Matrix AE(n, 2 * n);
rep(i,n){
rep(j,n) AE[i][j] = d[i][j];
AE[i][i + n] = 1;
}
rep(r, n){
int pivot = -1;
for(int i = r; i < n; i++){
if(AE[i][r] != 0){
pivot = i;
break;
}
}
// 逆行列が存在しない
if(pivot == -1) return Matrix();
swap(AE[r], AE[pivot]);
for(int j = r + 1; j < 2 * n; j++) AE[r][j] /= AE[r][r];
rep(i,n)if(i != r){
for(int j = r + 1; j < 2 * n; j++){
AE[i][j] -= AE[i][r] * AE[r][j];
}
}
}
Matrix r(n, n);
rep(i,n)rep(j,n) r[i][j] = AE[i][j + n];
return r;
}
// !! not verify !!
vector<T> linear_equation(vector<T> b){
Matrix invA = (*this).inv();
if(invA.h == 0) return {};
return invA * b;
}
};
// Matrix<T> mat(h, w);
// Matrix<T> identity = Matrix<T>::eye(n);
// pii hw = mat.shape();
// T determinant = A.det();
// Matrix<T> powA = A.pow(K);
// Matrix<T> invA = A.pow(K);
// vector<T> x = A.linear_equation(b);
using mint = modint998244353;
//https://drken1215.hatenablog.com/entry/2018/06/08/210000
//COMinit()を忘れない!!!
const ll NMAX = 202020;
const ll MOD = 998244353;
//const int MOD = 1e9+7;
ll fac[NMAX],finv[NMAX],inv[NMAX];
void COMinit(){
fac[0] = fac[1] = 1LL;
finv[0] = finv[1] = 1LL;
inv[1] = 1LL;
for (int i=2;i<NMAX;i++){
fac[i] = fac[i-1] * i % MOD;
inv[i] = MOD - inv[MOD%i] * (MOD/i) % MOD;
finv[i] = finv[i-1] * inv[i] % MOD;
}
}
ll nCr(int n,int k){
if (n<k) return 0LL;
if (n < 0 || k < 0) return 0LL;
return fac[n] * (finv[k] * finv[n-k] % MOD) % MOD;
}
ll nPr(int n,int k){
if (n<k) return 0LL;
if (n < 0 || k < 0) return 0LL;
return fac[n] * finv[n-k] % MOD;
}
ll nHr(int n,int r){
return nCr(n+r-1,r);
}
int main(){
cin.tie(0);
ios_base::sync_with_stdio(false);
COMinit();
ll K, L, R;
cin >> K >> L >> R;
Matrix<mint> M(K + 4, K + 4);
M[0][0] = 1;
M[0][1] = 1;
M[1][1] = K;
M[1][2] = 1;
M[1][3] = 1;
M[2][2] = K;
int row = 3;
for(int x = K; x >= 0; x--){
for(int i = 0; i <= x; i++){
M[row][i + row] = nCr(x, i);
}
row++;
}
// debug(M.d);
Matrix<mint> MR = M.pow(R + 1);
Matrix<mint> ML = (L > 0 ? M.pow(L) : M.unit());
debug(M.d, MR.d, ML.d);
vector<mint> B(K + 4);
B[0] = 0;
B[1] = 1;
B[2] = 1;
B[K + 3] = 1;
mint Sl = 0;
rep(i, K + 4) Sl += ML[0][i] * B[i];
mint Sr = 0;
rep(i, K + 4) Sr += MR[0][i] * B[i];
cout << Sr - Sl + (L == 0) << endl;
}