結果
| 問題 |
No.3182 recurrence relation’s intersection sum
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-06-13 22:34:38 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 546 ms / 2,000 ms |
| コード長 | 4,809 bytes |
| コンパイル時間 | 3,509 ms |
| コンパイル使用メモリ | 289,216 KB |
| 実行使用メモリ | 7,848 KB |
| 最終ジャッジ日時 | 2025-06-13 22:34:51 |
| 合計ジャッジ時間 | 12,995 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 40 |
ソースコード
#include <bits/stdc++.h>
#define fi first
#define se second
#define rep(i,s,n) for (int i = (s); i < (n); ++i)
#define rrep(i,n,g) for (int i = (n)-1; i >= (g); --i)
#define all(a) a.begin(),a.end()
#define rall(a) a.rbegin(),a.rend()
#define len(x) (int)(x).size()
#define dup(x,y) (((x)+(y)-1)/(y))
#define pb push_back
#define eb emplace_back
#define Field(T) vector<vector<T>>
using namespace std;
using ll = long long;
using ull = unsigned long long;
template<typename T> using pq = priority_queue<T,vector<T>,greater<T>>;
using P = pair<int,int>;
template<class T>bool chmax(T&a,T b){if(a<b){a=b;return 1;}return 0;}
template<class T>bool chmin(T&a,T b){if(b<a){a=b;return 1;}return 0;}
template< int mod >
struct ModInt {
int x;
ModInt() : x(0) {}
ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt &operator+=(const ModInt &p) {
if((x += p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if((x += mod - p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (int) (1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inverse() const {
assert(x);
int a = x, b = mod, u = 1, v = 0, t;
while(b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return ModInt(u);
}
ModInt pow(int64_t n) const {
ModInt ret(1), mul(x);
while(n > 0) {
if(n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const ModInt &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, ModInt &a) {
int64_t t;
is >> t;
a = ModInt< mod >(t);
return (is);
}
static int get_mod() { return mod; }
};
template< typename T >
struct Combination {
private:
int n_;
vector<T> fac, inv, finv;
void extend(int l) {
while(n_ <= l) {
fac.emplace_back(fac.back() * T(n_));
inv.emplace_back(-inv[T::get_mod()%n_] * (T::get_mod()/n_));
finv.emplace_back(finv.back() * inv[n_]);
++n_;
}
}
public:
Combination() : n_(2), fac({T(1),T(1)}), inv({T(0),T(1)}), finv({T(1),T(1)}) {}
// n!
T fact(int n) {
extend(n);
return fac[n];
}
// (n!)^{-1}
T ifact(int n) {
extend(n);
return finv[n];
}
// nCk
T com(int n, int k) {
if (n < 0 || k < 0 || n < k) return 0;
extend(n);
return fac[n] * finv[k] * finv[n-k];
}
// nPk
T perm(int n, int k) {
if (n < 0 || k < 0 || n < k) return 0;
extend(n);
return fac[n] * finv[n-k];
}
// nCk を Lucas の定理を用いて計算する。最悪 O(mod) であることに注意。
T com_lucas(long long n, long long k) {
if (n < 0 || k < 0 || n < k) return 0;
T ret = 1;
const int p = T::get_mod();
while(n > 0 || k > 0) {
ret *= com(n % p, k % p);
n /= p, k /= p;
}
return ret;
}
};
template<typename T>
vector<vector<T>> mat_mul(vector<vector<T>> &a, vector<vector<T>> &b) {
assert(b.size() == a[0].size());
int n = (int)a.size(), m = (int)b[0].size(), l = (int)b.size();
vector<vector<T>> c(n, vector<T>(m, T(0)));
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
for (int k = 0; k < l; ++k) {
c[i][j] += a[i][k] * b[k][j];
}
}
}
return c;
}
template<typename T>
vector<vector<T>> mat_pow(vector<vector<T>> &x, long long n) {
int m = (int)x.size();
vector<vector<T>> y(m, vector<T>(m, T(0)));
for (int i = 0; i < m; ++i) {
y[i][i] = T(1);
}
while (n) {
if (n & 1) {
y = mat_mul(x, y);
}
x = mat_mul(x, x);
n >>= 1;
}
return y;
}
using mint = ModInt<998244353>;
int main() {
int k; ll l, r;
cin >> k >> l >> r;
vector<vector<mint>> a(k+4, vector<mint>(k+4));
a[0][0] = a[0][1] = 1;
a[1][1] = k, a[1][2] = a[1][k+3] = 1;
a[2][2] = k;
Combination<mint> com;
rep(i,0,k+1) rep(j,0,k+1) {
a[i+3][j+3] = com.com(i, j);
}
// rep(i,0,k+4) {
// rep(j,0,k+4) {
// cout << a[i][j] << " ";
// }
// cout << endl;
// }
function<mint(ll)> f = [&](ll n) {
vector<vector<mint>> x = a;
x = mat_pow(x, n);
return x[0][1]+x[0][2]+x[0][3];
};
cout << f(r+1)-f(l) << endl;
return 0;
}