結果
問題 |
No.3182 recurrence relation’s intersection sum
|
ユーザー |
|
提出日時 | 2025-06-13 22:34:38 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 546 ms / 2,000 ms |
コード長 | 4,809 bytes |
コンパイル時間 | 3,509 ms |
コンパイル使用メモリ | 289,216 KB |
実行使用メモリ | 7,848 KB |
最終ジャッジ日時 | 2025-06-13 22:34:51 |
合計ジャッジ時間 | 12,995 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 40 |
ソースコード
#include <bits/stdc++.h> #define fi first #define se second #define rep(i,s,n) for (int i = (s); i < (n); ++i) #define rrep(i,n,g) for (int i = (n)-1; i >= (g); --i) #define all(a) a.begin(),a.end() #define rall(a) a.rbegin(),a.rend() #define len(x) (int)(x).size() #define dup(x,y) (((x)+(y)-1)/(y)) #define pb push_back #define eb emplace_back #define Field(T) vector<vector<T>> using namespace std; using ll = long long; using ull = unsigned long long; template<typename T> using pq = priority_queue<T,vector<T>,greater<T>>; using P = pair<int,int>; template<class T>bool chmax(T&a,T b){if(a<b){a=b;return 1;}return 0;} template<class T>bool chmin(T&a,T b){if(b<a){a=b;return 1;}return 0;} template< int mod > struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int) (1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { assert(x); int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; } }; template< typename T > struct Combination { private: int n_; vector<T> fac, inv, finv; void extend(int l) { while(n_ <= l) { fac.emplace_back(fac.back() * T(n_)); inv.emplace_back(-inv[T::get_mod()%n_] * (T::get_mod()/n_)); finv.emplace_back(finv.back() * inv[n_]); ++n_; } } public: Combination() : n_(2), fac({T(1),T(1)}), inv({T(0),T(1)}), finv({T(1),T(1)}) {} // n! T fact(int n) { extend(n); return fac[n]; } // (n!)^{-1} T ifact(int n) { extend(n); return finv[n]; } // nCk T com(int n, int k) { if (n < 0 || k < 0 || n < k) return 0; extend(n); return fac[n] * finv[k] * finv[n-k]; } // nPk T perm(int n, int k) { if (n < 0 || k < 0 || n < k) return 0; extend(n); return fac[n] * finv[n-k]; } // nCk を Lucas の定理を用いて計算する。最悪 O(mod) であることに注意。 T com_lucas(long long n, long long k) { if (n < 0 || k < 0 || n < k) return 0; T ret = 1; const int p = T::get_mod(); while(n > 0 || k > 0) { ret *= com(n % p, k % p); n /= p, k /= p; } return ret; } }; template<typename T> vector<vector<T>> mat_mul(vector<vector<T>> &a, vector<vector<T>> &b) { assert(b.size() == a[0].size()); int n = (int)a.size(), m = (int)b[0].size(), l = (int)b.size(); vector<vector<T>> c(n, vector<T>(m, T(0))); for (int i = 0; i < n; ++i) { for (int j = 0; j < m; ++j) { for (int k = 0; k < l; ++k) { c[i][j] += a[i][k] * b[k][j]; } } } return c; } template<typename T> vector<vector<T>> mat_pow(vector<vector<T>> &x, long long n) { int m = (int)x.size(); vector<vector<T>> y(m, vector<T>(m, T(0))); for (int i = 0; i < m; ++i) { y[i][i] = T(1); } while (n) { if (n & 1) { y = mat_mul(x, y); } x = mat_mul(x, x); n >>= 1; } return y; } using mint = ModInt<998244353>; int main() { int k; ll l, r; cin >> k >> l >> r; vector<vector<mint>> a(k+4, vector<mint>(k+4)); a[0][0] = a[0][1] = 1; a[1][1] = k, a[1][2] = a[1][k+3] = 1; a[2][2] = k; Combination<mint> com; rep(i,0,k+1) rep(j,0,k+1) { a[i+3][j+3] = com.com(i, j); } // rep(i,0,k+4) { // rep(j,0,k+4) { // cout << a[i][j] << " "; // } // cout << endl; // } function<mint(ll)> f = [&](ll n) { vector<vector<mint>> x = a; x = mat_pow(x, n); return x[0][1]+x[0][2]+x[0][3]; }; cout << f(r+1)-f(l) << endl; return 0; }