結果
| 問題 |
No.3178 free sort
|
| コンテスト | |
| ユーザー |
HackberryA3
|
| 提出日時 | 2025-06-13 22:36:10 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 8,891 bytes |
| コンパイル時間 | 3,438 ms |
| コンパイル使用メモリ | 295,496 KB |
| 実行使用メモリ | 11,540 KB |
| 最終ジャッジ日時 | 2025-06-13 22:36:18 |
| 合計ジャッジ時間 | 7,594 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 5 |
| other | WA * 40 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
using vll = vector<ll>;
using vvll = vector<vll>;
using P = pair<int, int>;
using PP = pair<int, P>;
using PLL = pair<ll, ll>;
using PPLL = pair<ll, PLL>;
#define rep(i, n) for(ll i = 0; i < n; ++i)
#define rrep(i, n) for(ll i = n - 1; i >= 0; --i)
#define loop(i, a, b) for(ll i = a; i <= b; ++i)
#define all(v) v.begin(), v.end()
#define nC2(n) n * (n - 1) / 2
constexpr ll INF = 9009009009009009009LL;
constexpr int INF32 = 2002002002;
constexpr ll MOD = 998244353;
constexpr ll MOD107 = 1000000007;
// Linear Algebra ////////////////////////////////////////////////
const double Rad2Deg = 180.0 / M_PI;
const double Deg2Rad = M_PI / 180.0;
//////////////////////////////////////////////////////////////////
int dx[8] = {0, 1, 0, -1, 1, 1, -1, -1};
int dy[8] = {1, 0, -1, 0, 1, -1, 1, -1};
template <class T>
inline bool chmax(T &a, const T &b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmin(T &a, const T &b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <typename Container,
typename = std::enable_if_t<
!std::is_same_v<Container, std::string> &&
std::is_convertible_v<decltype(std::declval<Container>().begin()),
typename Container::iterator>>>
ostream &operator<<(ostream &os, const Container &container) {
auto it = container.begin();
auto end = container.end();
if (it != end) {
os << *it;
++it;
}
for (; it != end; ++it) {
os << " " << *it;
}
return os;
}
template <typename T>
ostream& operator<<(ostream& os, const vector<T>& v) {
for (size_t i = 0; i < v.size(); ++i) {
os << v[i];
if (i != v.size() - 1) os << " ";
}
return os;
}
template <typename T>
ostream& operator<<(ostream& os, const vector<vector<T>>& vv) {
for (size_t i = 0; i < vv.size(); ++i) {
os << vv[i];
if (i != vv.size() - 1) os << "\n";
}
return os;
}
template <typename T>
istream& operator>>(istream& is, vector<T>& v) {
assert(v.size() > 0);
for (size_t i = 0; i < v.size(); ++i) is >> v[i];
return is;
}
template <typename T>
istream& operator>>(istream& is, vector<vector<T>>& vv) {
assert(vv.size() > 0);
for (size_t i = 0; i < vv.size(); ++i) is >> vv[i];
return is;
}
struct phash {
template<class T1, class T2>
inline size_t operator()(const pair<T1, T2> & p) const {
auto h1 = hash<T1>()(p.first);
auto h2 = hash<T2>()(p.second);
size_t seed = h1 + h2;
h1 = ((h1 >> 16) ^ h1) * 0x45d9f3b;
h1 = ((h1 >> 16) ^ h1) * 0x45d9f3b;
h1 = (h1 >> 16) ^ h1;
seed ^= h1 + 0x9e3779b9 + (seed << 6) + (seed >> 2);
h2 = ((h2 >> 16) ^ h2) * 0x45d9f3b;
h2 = ((h2 >> 16) ^ h2) * 0x45d9f3b;
h2 = (h2 >> 16) ^ h2;
seed ^= h2 + 0x9e3779b9 + (seed << 6) + (seed >> 2);
return seed;
}
};
/**
* @brief 拡張ユークリッドの互除法
*/
ll ext_gcd(ll a, ll b, ll &x, ll &y) {
if (b == 0) {
x = 1;
y = 0;
return a;
}
ll d = ext_gcd(b, a % b, y, x);
y -= a / b * x;
return d;
}
/**
* @brief 負に対応した mod
*/
inline ll mmod(ll a, ll mod) {
return (a % mod + mod) % mod;
}
/**
* @brief 法がmodのときのaの逆元を求める
* @remark aとmodが互いに素である必要がある
*/
ll inv(ll a, ll mod) {
ll x, y;
ext_gcd(a, mod, x, y);
return mmod(x, mod);
}
ll pow(ll a, ll b) {
ll res = 1;
while (b > 0) {
if (b & 1) res = res * a;
a = a * a;
b >>= 1;
}
return res;
}
ll pow(ll a, ll b, ll mod) {
bool inverse = b < 0;
if (inverse) b = -b;
ll res = 1;
while (b > 0) {
if (b & 1) res = res * a % mod;
a = a * a % mod;
b >>= 1;
}
return inverse ? inv(res, mod) : res;
}
ll nCrDP[67][67];
ll nCr(ll n, ll r) {
assert(n < 67 && r < 67);
assert(n >= r);
assert(n >= 0 && r >= 0);
if (nCrDP[n][r] != 0) return nCrDP[n][r];
if (r == 0 || n == r) return 1;
return nCrDP[n][r] = nCr(n - 1, r - 1) + nCr(n - 1, r);
}
ll nHr(ll n, ll r) {
return nCr(n + r - 1, r);
}
vector<ll> fact;
void calc_fact(ll size) {
assert(size <= 20);
fact = vector<ll>(size + 1, 0);
fact[0] = 1;
for (int i = 0; i < size; ++i)
fact[i + 1] = fact[i] * (i + 1);
}
unordered_map<ll, vector<ll>> modfact, modinvfact;
void calc_fact(ll size, ll mod) {
if (modfact.count(mod) && modfact[mod].size() - 1 > size) return;
ll oldsize = max(0, (int)modfact[mod].size() - 1);
modfact[mod].resize(size + 1, 1);
modinvfact[mod].resize(size + 1, 1);
for (int i = oldsize; i < size; ++i)
modfact[mod][i + 1] = modfact[mod][i] * (i + 1) % mod;
modinvfact[mod][size] = inv(modfact[mod][size], mod);
for (int i = size - 1; i >= oldsize; --i)
modinvfact[mod][i] = modinvfact[mod][i + 1] * (i + 1) % mod;
}
ll nCr(ll n, ll r, ll mod, ll dp_size = 500000LL) {
assert(n >= r);
assert(n >= 0 && r >= 0);
calc_fact(max(n, dp_size), mod);
return modfact[mod][n] * modinvfact[mod][r] % mod * modinvfact[mod][n - r] % mod;
}
ll nHr(ll n, ll r, ll mod, ll dp_size = 500000LL) {
return nCr(n + r - 1, r, mod, dp_size);
}
struct mint
{
private:
long long n;
long long mod;
public:
static long long default_mod;
mint() : n(0), mod(default_mod == 0 ? 998244353 : default_mod) {}
mint(const mint &m) {
n = m.n;
mod = m.mod;
}
mint(long long n, long long mod = default_mod) {
if (default_mod == 0) {
default_mod = mod == 0 ? 998244353 : mod;
mod = default_mod;
}
assert(1 <= mod);
this->n = (n % mod + mod) % mod;
this->mod = mod;
}
mint inv() const {
assert(gcd(n, mod) == 1);
auto ext_gcd = [&](auto f, long long a, long long b, long long &x, long long &y) -> long long {
if (b == 0) {
x = 1;
y = 0;
return a;
}
long long d = f(f, b, a % b, y, x);
y -= a / b * x;
return d;
};
long long x, y;
ext_gcd(ext_gcd, n, mod, x, y);
return mint((x % mod + mod) % mod, mod);
}
mint pow(long long exp) const {
bool inverse = exp < 0;
if (inverse) exp = -exp;
ll a = n;
ll res = 1;
while (exp > 0) {
if (exp & 1) res = res * a % mod;
a = a * a % mod;
exp >>= 1;
}
return (inverse ? mint(res, mod).inv() : mint(res, mod));
}
mint &operator=(const mint &o) {
n = o.n;
mod = o.mod;
return *this;
}
mint operator+() const { return *this; }
mint operator-() const { return 0 - *this; }
mint &operator++() {
n++;
if (n == mod) n = 0;
return *this;
}
mint &operator--() {
if (n == 0) n = mod;
n--;
return *this;
}
mint operator++(int) {
mint res = *this;
++*this;
return res;
}
mint operator--(int) {
mint res = *this;
--*this;
return res;
}
mint &operator+=(const mint &o) {
assert(mod == o.mod);
n += o.n;
if (n >= mod) n -= mod;
return *this;
}
mint &operator-=(const mint &o) {
assert(mod == o.mod);
n += mod - o.n;
if (n >= mod) n -= mod;
return *this;
}
mint &operator*=(const mint &o) {
assert(mod == o.mod);
n = n * o.n % mod;
return *this;
}
mint &operator/=(const mint &o) {
assert(mod == o.mod);
n = n * o.inv().n % mod;
return *this;
}
friend mint operator+(const mint &a, const mint &b) {
return mint(a) += b;
}
friend mint operator-(const mint &a, const mint &b) {
return mint(a) -= b;
}
friend mint operator*(const mint &a, const mint &b) {
return mint(a) *= b;
}
friend mint operator/(const mint &a, const mint &b) {
return mint(a) /= b;
}
friend bool operator==(const mint &a, const mint &b) {
return a.n == b.n && a.mod == b.mod;
}
friend bool operator!=(const mint &a, const mint &b) {
return a.n != b.n || a.mod != b.mod;
}
friend ostream &operator<<(ostream &os, const mint &m) {
os << m.n;
return os;
}
};
long long mint::default_mod = 0;
int solve() {
string s;
cin >> s;
map<ll, ll> cnt;
for (char c : s) {
cnt[c - '0']++;
}
calc_fact(500000LL, MOD);
mint ans = 1;
ll digits = s.size();
if (cnt.begin()->first == 0) {
digits--;
ans *= nCr(digits, cnt.begin()->second, MOD);
cnt.erase(0);
}
for (auto [num, c] : cnt) {
mint comb = nCr(digits, c, MOD);
ans *= comb;
digits -= c;
}
cout << ans << "\n";
return 0;
}
int main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
return solve();
}
HackberryA3