結果

問題 No.3182 recurrence relation’s intersection sum
ユーザー koba-e964
提出日時 2025-06-13 22:58:58
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 617 ms / 2,000 ms
コード長 6,415 bytes
コンパイル時間 12,899 ms
コンパイル使用メモリ 400,364 KB
実行使用メモリ 7,844 KB
最終ジャッジ日時 2025-06-13 22:59:22
合計ジャッジ時間 23,627 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 40
権限があれば一括ダウンロードができます

ソースコード

diff #

fn getline() -> String {
    let mut ret = String::new();
    std::io::stdin().read_line(&mut ret).ok().unwrap();
    ret
}

/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342
mod mod_int {
    use std::ops::*;
    pub trait Mod: Copy { fn m() -> i64; }
    #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
    pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }
    impl<M: Mod> ModInt<M> {
        // x >= 0
        pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }
        fn new_internal(x: i64) -> Self {
            ModInt { x: x, phantom: ::std::marker::PhantomData }
        }
        pub fn pow(self, mut e: i64) -> Self {
            debug_assert!(e >= 0);
            let mut sum = ModInt::new_internal(1);
            let mut cur = self;
            while e > 0 {
                if e % 2 != 0 { sum *= cur; }
                cur *= cur;
                e /= 2;
            }
            sum
        }
        #[allow(dead_code)]
        pub fn inv(self) -> Self { self.pow(M::m() - 2) }
    }
    impl<M: Mod> Default for ModInt<M> {
        fn default() -> Self { Self::new_internal(0) }
    }
    impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {
        type Output = Self;
        fn add(self, other: T) -> Self {
            let other = other.into();
            let mut sum = self.x + other.x;
            if sum >= M::m() { sum -= M::m(); }
            ModInt::new_internal(sum)
        }
    }
    impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {
        type Output = Self;
        fn sub(self, other: T) -> Self {
            let other = other.into();
            let mut sum = self.x - other.x;
            if sum < 0 { sum += M::m(); }
            ModInt::new_internal(sum)
        }
    }
    impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {
        type Output = Self;
        fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }
    }
    impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {
        fn add_assign(&mut self, other: T) { *self = *self + other; }
    }
    impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {
        fn sub_assign(&mut self, other: T) { *self = *self - other; }
    }
    impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {
        fn mul_assign(&mut self, other: T) { *self = *self * other; }
    }
    impl<M: Mod> Neg for ModInt<M> {
        type Output = Self;
        fn neg(self) -> Self { ModInt::new(0) - self }
    }
    impl<M> ::std::fmt::Display for ModInt<M> {
        fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
            self.x.fmt(f)
        }
    }
    impl<M: Mod> ::std::fmt::Debug for ModInt<M> {
        fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
            let (mut a, mut b, _) = red(self.x, M::m());
            if b < 0 {
                a = -a;
                b = -b;
            }
            write!(f, "{}/{}", a, b)
        }
    }
    impl<M: Mod> From<i64> for ModInt<M> {
        fn from(x: i64) -> Self { Self::new(x) }
    }
    // Finds the simplest fraction x/y congruent to r mod p.
    // The return value (x, y, z) satisfies x = y * r + z * p.
    fn red(r: i64, p: i64) -> (i64, i64, i64) {
        if r.abs() <= 10000 {
            return (r, 1, 0);
        }
        let mut nxt_r = p % r;
        let mut q = p / r;
        if 2 * nxt_r >= r {
            nxt_r -= r;
            q += 1;
        }
        if 2 * nxt_r <= -r {
            nxt_r += r;
            q -= 1;
        }
        let (x, z, y) = red(nxt_r, r);
        (x, y - q * z, z)
    }
} // mod mod_int

macro_rules! define_mod {
    ($struct_name: ident, $modulo: expr) => {
        #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
        pub struct $struct_name {}
        impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }
    }
}
const MOD: i64 = 998_244_353;
define_mod!(P, MOD);
type MInt = mod_int::ModInt<P>;

// Depends on MInt.rs
fn fact_init(w: usize) -> (Vec<MInt>, Vec<MInt>) {
    let mut fac = vec![MInt::new(1); w];
    let mut invfac = vec![0.into(); w];
    for i in 1..w {
        fac[i] = fac[i - 1] * i as i64;
    }
    invfac[w - 1] = fac[w - 1].inv();
    for i in (0..w - 1).rev() {
        invfac[i] = invfac[i + 1] * (i as i64 + 1);
    }
    (fac, invfac)
}

// Depends on MInt.rs
// Verified by: https://atcoder.jp/contests/abc199/submissions/22259436
fn squmul(a: &[Vec<MInt>], b: &[Vec<MInt>]) -> Vec<Vec<MInt>> {
    let n = a.len();
    let mut ret = vec![vec![MInt::new(0); n]; n];
    for i in 0..n {
        for j in 0..n {
            for k in 0..n {
                ret[i][k] += a[i][j] * b[j][k];
            }
        }
    }
    ret
}

fn squpow(a: &[Vec<MInt>], mut e: i64) -> Vec<Vec<MInt>> {
    let n = a.len();
    let mut sum = vec![vec![MInt::new(0); n]; n];
    for i in 0..n { sum[i][i] = 1.into(); }
    let mut cur = a.to_vec();
    while e > 0 {
        if e % 2 == 1 {
            sum = squmul(&sum, &cur);
        }
        cur = squmul(&cur, &cur);
        e /= 2;
    }
    sum
}

fn f(k: usize, n: i64) -> MInt {
    let (fac, invfac) = fact_init(k + 1);
    let mut mat = vec![vec![MInt::new(0); k + 4]; k + 4];
    let kk = MInt::new(k as i64);
    for i in 0..k + 1 {
        for j in 0..i + 1 {
            mat[j][i] = fac[i] * invfac[j] * invfac[i - j];
        }
    }
    mat[k + 1][k + 1] = kk;
    mat[k + 3][k + 2] = MInt::new(1);
    mat[k][k + 3] = MInt::new(1);
    mat[k + 1][k + 3] = MInt::new(1);
    mat[k + 2][k + 3] = -kk;
    mat[k + 3][k + 3] = kk + 1;

    let pw = squpow(&mat, n);
    let mut ret = MInt::new(0);
    ret += pw[0][k + 2];
    ret += pw[k + 1][k + 2];
    ret += pw[k + 3][k + 2];
    ret
}

// https://yukicoder.me/problems/no/3182 (3.5)
// b_n = \sum_{i=0}^{k - 1} a_i とする。
// b_0 = 0, b_1 = 1
// b_{n+2} - b_{n+1} = K (b_{n+1} - b_n) + n^K + K^n
// b_{n+2} = (K + 1) b_{n+1} - K b_n + n^K + K^n
// これは行列累乗で解ける。 i^0, i^1, ..., i^K, K^i, b_i, b_{i+1} からなるベクトルに行列を掛けるようにする。
fn main() {
    let ints = getline()
        .trim()
        .split_whitespace()
        .map(|x| x.parse::<i64>().unwrap())
        .collect::<Vec<_>>();
    let k = ints[0] as usize;
    let l = ints[1];
    let r = ints[2];
    println!("{}", f(k, r + 1) - f(k, l))
}
0