結果
問題 |
No.3182 recurrence relation’s intersection sum
|
ユーザー |
|
提出日時 | 2025-06-13 23:02:04 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 1,889 bytes |
コンパイル時間 | 441 ms |
コンパイル使用メモリ | 82,656 KB |
実行使用メモリ | 95,812 KB |
最終ジャッジ日時 | 2025-06-13 23:02:41 |
合計ジャッジ時間 | 34,048 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 TLE * 1 |
other | AC * 35 TLE * 2 -- * 3 |
ソースコード
MOD = 998244353 def modinv(a): return pow(a, MOD - 2, MOD) def setup(max_n): fac = [1] * (max_n + 1) finv = [1] * (max_n + 1) inv = [1] * (max_n + 1) for i in range(2, max_n + 1): fac[i] = fac[i - 1] * i % MOD inv[i] = MOD - inv[MOD % i] * (MOD // i) % MOD finv[i] = finv[i - 1] * inv[i] % MOD return fac, finv def binom(n, r, fac, finv): if n < r or n < 0 or r < 0: return 0 return fac[n] * finv[r] % MOD * finv[n - r] % MOD def mat_mul(a, b): h, w, l = len(a), len(b[0]), len(b) res = [[0] * w for _ in range(h)] for i in range(h): for j in range(w): for k in range(l): res[i][j] = (res[i][j] + a[i][k] * b[k][j]) % MOD return res def mat_pow(mat, power): size = len(mat) res = [[int(i == j) for j in range(size)] for i in range(size)] while power: if power % 2: res = mat_mul(res, mat) mat = mat_mul(mat, mat) power //= 2 return res def main(): k, l, r = map(int, input().split()) fac, finv = setup(k + 1) size = k + 4 m = [[0] * size for _ in range(size)] for i in range(size): if i == 0: m[i][0] = k m[i][1] = 1 for j in range(2 + k): m[i][j] = m[i][j] # do nothing m[i][2 + k] = 1 elif i < k + 2: top = k - (i - 1) for j in range(i, 2 + k): m[i][j] = binom(top, k + 1 - j, fac, finv) elif i == k + 2: m[i][k + 2] = k elif i == k + 3: m[i][0] = 1 m[i][i] = 1 ml = mat_pow(m, l) mr = mat_pow(m, r + 1) def get_value(mat): return (mat[k + 3][0] + mat[k + 3][k + 1] + mat[k + 3][k + 2]) % MOD ans = (get_value(mr) - get_value(ml)) % MOD print(ans) if __name__ == "__main__": main()