結果
問題 |
No.3186 Big Order
|
ユーザー |
![]() |
提出日時 | 2025-06-20 22:01:43 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 54,486 bytes |
コンパイル時間 | 6,515 ms |
コンパイル使用メモリ | 287,164 KB |
実行使用メモリ | 7,848 KB |
最終ジャッジ日時 | 2025-06-20 22:02:40 |
合計ジャッジ時間 | 46,591 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 27 TLE * 7 |
コンパイルメッセージ
main.cpp:792:9: warning: #pragma once in main file 792 | #pragma once | ^~~~ main.cpp:803:9: warning: #pragma once in main file 803 | #pragma once | ^~~~ main.cpp:852:9: warning: #pragma once in main file 852 | #pragma once | ^~~~ main.cpp:956:9: warning: #pragma once in main file 956 | #pragma once | ^~~~ main.cpp:1181:9: warning: #pragma once in main file 1181 | #pragma once | ^~~~
ソースコード
#include <bits/stdc++.h> using namespace std; typedef long long ll; template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; } template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; } #define vi vector<int> #define vl vector<ll> #define vii vector<pair<int,int>> #define vll vector<pair<ll,ll>> #define vvi vector<vector<int>> #define vvl vector<vector<ll>> #define vvii vector<vector<pair<int,int>>> #define vvll vector<vector<pair<ll,ll>>> #define vst vector<string> #define pii pair<int,int> #define pll pair<ll,ll> #define pb push_back #define all(x) (x).begin(),(x).end() #define mkunique(x) sort(all(x));(x).erase(unique(all(x)),(x).end()) #define fi first #define se second #define mp make_pair #define si(x) int(x.size()) const int mod=998244353,MAX=300005,INF=15<<26; //modint+畳み込み+逆元テーブル // from: https://gist.github.com/yosupo06/ddd51afb727600fd95d9d8ad6c3c80c9 // (based on AtCoder STL) #include <algorithm> #include <array> #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } int bsf(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } } // namespace internal } // namespace atcoder #include <utility> namespace atcoder { namespace internal { constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } struct barrett { unsigned int _m; unsigned long long im; barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} unsigned int umod() const { return _m; } unsigned int mul(unsigned int a, unsigned int b) const { unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; for (long long a : {2, 7, 61}) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if (m0 < 0) m0 += b / s; return {s, m0}; } constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); } // namespace internal } // namespace atcoder #include <cassert> #include <numeric> #include <type_traits> namespace atcoder { namespace internal { #ifndef _MSC_VER template <class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <class T> using is_integral = typename std::is_integral<T>; template <class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal } // namespace atcoder #include <cassert> #include <numeric> #include <type_traits> #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template <class T> using is_modint = std::is_base_of<modint_base, T>; template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; } // namespace internal template <int m, std::enable_if_t<(1 <= m)>* = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } static_modint(bool v) { _v = ((unsigned int)(v) % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime<m>; }; template <int id> struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> internal::barrett dynamic_modint<id>::bt = 998244353; using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template <class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>; template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template <class> struct is_dynamic_modint : public std::false_type {}; template <int id> struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {}; template <class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal } // namespace atcoder #include <cassert> #include <type_traits> #include <vector> namespace atcoder { namespace internal { template <class mint, internal::is_static_modint_t<mint>* = nullptr> void butterfly(std::vector<mint>& a) { static constexpr int g = internal::primitive_root<mint::mod()>; int n = int(a.size()); int h = internal::ceil_pow2(n); static bool first = true; static mint sum_e[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i] if (first) { first = false; mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1 int cnt2 = bsf(mint::mod() - 1); mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv(); for (int i = cnt2; i >= 2; i--) { es[i - 2] = e; ies[i - 2] = ie; e *= e; ie *= ie; } mint now = 1; for (int i = 0; i < cnt2 - 2; i++) { sum_e[i] = es[i] * now; now *= ies[i]; } } for (int ph = 1; ph <= h; ph++) { int w = 1 << (ph - 1), p = 1 << (h - ph); mint now = 1; for (int s = 0; s < w; s++) { int offset = s << (h - ph + 1); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p] * now; a[i + offset] = l + r; a[i + offset + p] = l - r; } now *= sum_e[bsf(~(unsigned int)(s))]; } } } template <class mint, internal::is_static_modint_t<mint>* = nullptr> void butterfly_inv(std::vector<mint>& a) { static constexpr int g = internal::primitive_root<mint::mod()>; int n = int(a.size()); int h = internal::ceil_pow2(n); static bool first = true; static mint sum_ie[30]; // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i] if (first) { first = false; mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1 int cnt2 = bsf(mint::mod() - 1); mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv(); for (int i = cnt2; i >= 2; i--) { es[i - 2] = e; ies[i - 2] = ie; e *= e; ie *= ie; } mint now = 1; for (int i = 0; i < cnt2 - 2; i++) { sum_ie[i] = ies[i] * now; now *= es[i]; } } for (int ph = h; ph >= 1; ph--) { int w = 1 << (ph - 1), p = 1 << (h - ph); mint inow = 1; for (int s = 0; s < w; s++) { int offset = s << (h - ph + 1); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p]; a[i + offset] = l + r; a[i + offset + p] = (unsigned long long)(mint::mod() + l.val() - r.val()) * inow.val(); } inow *= sum_ie[bsf(~(unsigned int)(s))]; } } } } // namespace internal template <class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; if (std::min(n, m) <= 60) { if (n < m) { std::swap(n, m); std::swap(a, b); } std::vector<mint> ans(n + m - 1); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { ans[i + j] += a[i] * b[j]; } } return ans; } int z = 1 << internal::ceil_pow2(n + m - 1); a.resize(z); internal::butterfly(a); b.resize(z); internal::butterfly(b); for (int i = 0; i < z; i++) { a[i] *= b[i]; } internal::butterfly_inv(a); a.resize(n + m - 1); mint iz = mint(z).inv(); for (int i = 0; i < n + m - 1; i++) a[i] *= iz; return a; } template <unsigned int mod = 998244353, class T, std::enable_if_t<internal::is_integral<T>::value>* = nullptr> std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; using mint = static_modint<mod>; std::vector<mint> a2(n), b2(m); for (int i = 0; i < n; i++) { a2[i] = mint(a[i]); } for (int i = 0; i < m; i++) { b2[i] = mint(b[i]); } auto c2 = convolution(move(a2), move(b2)); std::vector<T> c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { c[i] = c2[i].val(); } return c; } std::vector<long long> convolution_ll(const std::vector<long long>& a, const std::vector<long long>& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; static constexpr unsigned long long MOD1 = 754974721; // 2^24 static constexpr unsigned long long MOD2 = 167772161; // 2^25 static constexpr unsigned long long MOD3 = 469762049; // 2^26 static constexpr unsigned long long M2M3 = MOD2 * MOD3; static constexpr unsigned long long M1M3 = MOD1 * MOD3; static constexpr unsigned long long M1M2 = MOD1 * MOD2; static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3; static constexpr unsigned long long i1 = internal::inv_gcd(MOD2 * MOD3, MOD1).second; static constexpr unsigned long long i2 = internal::inv_gcd(MOD1 * MOD3, MOD2).second; static constexpr unsigned long long i3 = internal::inv_gcd(MOD1 * MOD2, MOD3).second; auto c1 = convolution<MOD1>(a, b); auto c2 = convolution<MOD2>(a, b); auto c3 = convolution<MOD3>(a, b); std::vector<long long> c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { unsigned long long x = 0; x += (c1[i] * i1) % MOD1 * M2M3; x += (c2[i] * i2) % MOD2 * M1M3; x += (c3[i] * i3) % MOD3 * M1M2; long long diff = c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1)); if (diff < 0) diff += MOD1; static constexpr unsigned long long offset[5] = { 0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3}; x -= offset[diff % 5]; c[i] = x; } return c; } } // namespace atcoder using mint=atcoder::modint998244353; vector<mint> inv,fac,finv; void make(){ inv.resize(MAX); fac.resize(MAX); finv.resize(MAX); fac[0]=fac[1]=1; finv[0]=finv[1]=1; inv[1]=1; for(int i=2;i<MAX;i++){ inv[i]=-inv[mod%i]*(mod/i); fac[i]=fac[i-1]*i; finv[i]=finv[i-1]*inv[i]; } } mint comb(ll a,ll b){ if(a<b) return 0; return fac[a]*finv[b]*finv[a-b]; } mint perm(ll a,ll b){ if(a<b) return 0; return fac[a]*finv[a-b]; } //bigint // https://nyaannyaan.github.io/library/math/bigint.hpp.html #pragma once #include <algorithm> #include <cassert> #include <cmath> #include <iostream> #include <tuple> #include <utility> #include <vector> using namespace std; #pragma once #include <type_traits> using namespace std; namespace internal { template <typename T> using is_broadly_integral = typename conditional_t<is_integral_v<T> || is_same_v<T, __int128_t> || is_same_v<T, __uint128_t>, true_type, false_type>::type; template <typename T> using is_broadly_signed = typename conditional_t<is_signed_v<T> || is_same_v<T, __int128_t>, true_type, false_type>::type; template <typename T> using is_broadly_unsigned = typename conditional_t<is_unsigned_v<T> || is_same_v<T, __uint128_t>, true_type, false_type>::type; #define ENABLE_VALUE(x) \ template <typename T> \ constexpr bool x##_v = x<T>::value; ENABLE_VALUE(is_broadly_integral); ENABLE_VALUE(is_broadly_signed); ENABLE_VALUE(is_broadly_unsigned); #undef ENABLE_VALUE #define ENABLE_HAS_TYPE(var) \ template <class, class = void> \ struct has_##var : false_type {}; \ template <class T> \ struct has_##var<T, void_t<typename T::var>> : true_type {}; \ template <class T> \ constexpr auto has_##var##_v = has_##var<T>::value; #define ENABLE_HAS_VAR(var) \ template <class, class = void> \ struct has_##var : false_type {}; \ template <class T> \ struct has_##var<T, void_t<decltype(T::var)>> : true_type {}; \ template <class T> \ constexpr auto has_##var##_v = has_##var<T>::value; } // namespace internal #pragma once template <uint32_t mod> struct LazyMontgomeryModInt { using mint = LazyMontgomeryModInt; using i32 = int32_t; using u32 = uint32_t; using u64 = uint64_t; static constexpr u32 get_r() { u32 ret = mod; for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret; return ret; } static constexpr u32 r = get_r(); static constexpr u32 n2 = -u64(mod) % mod; static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30"); static_assert((mod & 1) == 1, "invalid, mod % 2 == 0"); static_assert(r * mod == 1, "this code has bugs."); u32 a; constexpr LazyMontgomeryModInt() : a(0) {} constexpr LazyMontgomeryModInt(const int64_t &b) : a(reduce(u64(b % mod + mod) * n2)){}; static constexpr u32 reduce(const u64 &b) { return (b + u64(u32(b) * u32(-r)) * mod) >> 32; } constexpr mint &operator+=(const mint &b) { if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } constexpr mint &operator-=(const mint &b) { if (i32(a -= b.a) < 0) a += 2 * mod; return *this; } constexpr mint &operator*=(const mint &b) { a = reduce(u64(a) * b.a); return *this; } constexpr mint &operator/=(const mint &b) { *this *= b.inverse(); return *this; } constexpr mint operator+(const mint &b) const { return mint(*this) += b; } constexpr mint operator-(const mint &b) const { return mint(*this) -= b; } constexpr mint operator*(const mint &b) const { return mint(*this) *= b; } constexpr mint operator/(const mint &b) const { return mint(*this) /= b; } constexpr bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } constexpr bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } constexpr mint operator-() const { return mint() - mint(*this); } constexpr mint operator+() const { return mint(*this); } constexpr mint pow(u64 n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } constexpr mint inverse() const { int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0; while (y > 0) { t = x / y; x -= t * y, u -= t * v; tmp = x, x = y, y = tmp; tmp = u, u = v, v = tmp; } return mint{u}; } friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); } friend istream &operator>>(istream &is, mint &b) { int64_t t; is >> t; b = LazyMontgomeryModInt<mod>(t); return (is); } constexpr u32 get() const { u32 ret = reduce(a); return ret >= mod ? ret - mod : ret; } static constexpr u32 get_mod() { return mod; } }; #pragma once template <typename mint> struct NTT { static constexpr uint32_t get_pr() { uint32_t _mod = mint::get_mod(); using u64 = uint64_t; u64 ds[32] = {}; int idx = 0; u64 m = _mod - 1; for (u64 i = 2; i * i <= m; ++i) { if (m % i == 0) { ds[idx++] = i; while (m % i == 0) m /= i; } } if (m != 1) ds[idx++] = m; uint32_t _pr = 2; while (1) { int flg = 1; for (int i = 0; i < idx; ++i) { u64 a = _pr, b = (_mod - 1) / ds[i], r = 1; while (b) { if (b & 1) r = r * a % _mod; a = a * a % _mod; b >>= 1; } if (r == 1) { flg = 0; break; } } if (flg == 1) break; ++_pr; } return _pr; }; static constexpr uint32_t mod = mint::get_mod(); static constexpr uint32_t pr = get_pr(); static constexpr int level = __builtin_ctzll(mod - 1); mint dw[level], dy[level]; void setwy(int k) { mint w[level], y[level]; w[k - 1] = mint(pr).pow((mod - 1) / (1 << k)); y[k - 1] = w[k - 1].inverse(); for (int i = k - 2; i > 0; --i) w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1]; dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2]; for (int i = 3; i < k; ++i) { dw[i] = dw[i - 1] * y[i - 2] * w[i]; dy[i] = dy[i - 1] * w[i - 2] * y[i]; } } NTT() { setwy(level); } void fft4(vector<mint> &a, int k) { if ((int)a.size() <= 1) return; if (k == 1) { mint a1 = a[1]; a[1] = a[0] - a[1]; a[0] = a[0] + a1; return; } if (k & 1) { int v = 1 << (k - 1); for (int j = 0; j < v; ++j) { mint ajv = a[j + v]; a[j + v] = a[j] - ajv; a[j] += ajv; } } int u = 1 << (2 + (k & 1)); int v = 1 << (k - 2 - (k & 1)); mint one = mint(1); mint imag = dw[1]; while (v) { // jh = 0 { int j0 = 0; int j1 = v; int j2 = j1 + v; int j3 = j2 + v; for (; j0 < v; ++j0, ++j1, ++j2, ++j3) { mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3]; mint t0p2 = t0 + t2, t1p3 = t1 + t3; mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag; a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3; a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3; } } // jh >= 1 mint ww = one, xx = one * dw[2], wx = one; for (int jh = 4; jh < u;) { ww = xx * xx, wx = ww * xx; int j0 = jh * v; int je = j0 + v; int j2 = je + v; for (; j0 < je; ++j0, ++j2) { mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww, t3 = a[j2 + v] * wx; mint t0p2 = t0 + t2, t1p3 = t1 + t3; mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag; a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3; a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3; } xx *= dw[__builtin_ctzll((jh += 4))]; } u <<= 2; v >>= 2; } } void ifft4(vector<mint> &a, int k) { if ((int)a.size() <= 1) return; if (k == 1) { mint a1 = a[1]; a[1] = a[0] - a[1]; a[0] = a[0] + a1; return; } int u = 1 << (k - 2); int v = 1; mint one = mint(1); mint imag = dy[1]; while (u) { // jh = 0 { int j0 = 0; int j1 = v; int j2 = v + v; int j3 = j2 + v; for (; j0 < v; ++j0, ++j1, ++j2, ++j3) { mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3]; mint t0p1 = t0 + t1, t2p3 = t2 + t3; mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag; a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3; a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3; } } // jh >= 1 mint ww = one, xx = one * dy[2], yy = one; u <<= 2; for (int jh = 4; jh < u;) { ww = xx * xx, yy = xx * imag; int j0 = jh * v; int je = j0 + v; int j2 = je + v; for (; j0 < je; ++j0, ++j2) { mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v]; mint t0p1 = t0 + t1, t2p3 = t2 + t3; mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy; a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww; a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww; } xx *= dy[__builtin_ctzll(jh += 4)]; } u >>= 4; v <<= 2; } if (k & 1) { u = 1 << (k - 1); for (int j = 0; j < u; ++j) { mint ajv = a[j] - a[j + u]; a[j] += a[j + u]; a[j + u] = ajv; } } } void ntt(vector<mint> &a) { if ((int)a.size() <= 1) return; fft4(a, __builtin_ctz(a.size())); } void intt(vector<mint> &a) { if ((int)a.size() <= 1) return; ifft4(a, __builtin_ctz(a.size())); mint iv = mint(a.size()).inverse(); for (auto &x : a) x *= iv; } vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) { int l = a.size() + b.size() - 1; if (min<int>(a.size(), b.size()) <= 40) { vector<mint> s(l); for (int i = 0; i < (int)a.size(); ++i) for (int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j]; return s; } int k = 2, M = 4; while (M < l) M <<= 1, ++k; setwy(k); vector<mint> s(M); for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i]; fft4(s, k); if (a.size() == b.size() && a == b) { for (int i = 0; i < M; ++i) s[i] *= s[i]; } else { vector<mint> t(M); for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i]; fft4(t, k); for (int i = 0; i < M; ++i) s[i] *= t[i]; } ifft4(s, k); s.resize(l); mint invm = mint(M).inverse(); for (int i = 0; i < l; ++i) s[i] *= invm; return s; } void ntt_doubling(vector<mint> &a) { int M = (int)a.size(); auto b = a; intt(b); mint r = 1, zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1)); for (int i = 0; i < M; i++) b[i] *= r, r *= zeta; ntt(b); copy(begin(b), end(b), back_inserter(a)); } }; #pragma once namespace ArbitraryNTT { using i64 = int64_t; using u128 = __uint128_t; constexpr int32_t m0 = 167772161; constexpr int32_t m1 = 469762049; constexpr int32_t m2 = 754974721; using mint0 = LazyMontgomeryModInt<m0>; using mint1 = LazyMontgomeryModInt<m1>; using mint2 = LazyMontgomeryModInt<m2>; constexpr int r01 = mint1(m0).inverse().get(); constexpr int r02 = mint2(m0).inverse().get(); constexpr int r12 = mint2(m1).inverse().get(); constexpr int r02r12 = i64(r02) * r12 % m2; constexpr i64 w1 = m0; constexpr i64 w2 = i64(m0) * m1; template <typename T, typename submint> vector<submint> mul(const vector<T> &a, const vector<T> &b) { static NTT<submint> ntt; vector<submint> s(a.size()), t(b.size()); for (int i = 0; i < (int)a.size(); ++i) s[i] = i64(a[i] % submint::get_mod()); for (int i = 0; i < (int)b.size(); ++i) t[i] = i64(b[i] % submint::get_mod()); return ntt.multiply(s, t); } template <typename T> vector<int> multiply(const vector<T> &s, const vector<T> &t, int mod) { auto d0 = mul<T, mint0>(s, t); auto d1 = mul<T, mint1>(s, t); auto d2 = mul<T, mint2>(s, t); int n = d0.size(); vector<int> ret(n); const int W1 = w1 % mod; const int W2 = w2 % mod; for (int i = 0; i < n; i++) { int n1 = d1[i].get(), n2 = d2[i].get(), a = d0[i].get(); int b = i64(n1 + m1 - a) * r01 % m1; int c = (i64(n2 + m2 - a) * r02r12 + i64(m2 - b) * r12) % m2; ret[i] = (i64(a) + i64(b) * W1 + i64(c) * W2) % mod; } return ret; } template <typename mint> vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) { if (a.size() == 0 && b.size() == 0) return {}; if (min<int>(a.size(), b.size()) < 128) { vector<mint> ret(a.size() + b.size() - 1); for (int i = 0; i < (int)a.size(); ++i) for (int j = 0; j < (int)b.size(); ++j) ret[i + j] += a[i] * b[j]; return ret; } vector<int> s(a.size()), t(b.size()); for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i].get(); for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i].get(); vector<int> u = multiply<int>(s, t, mint::get_mod()); vector<mint> ret(u.size()); for (int i = 0; i < (int)u.size(); ++i) ret[i] = mint(u[i]); return ret; } template <typename T> vector<u128> multiply_u128(const vector<T> &s, const vector<T> &t) { if (s.size() == 0 && t.size() == 0) return {}; if (min<int>(s.size(), t.size()) < 128) { vector<u128> ret(s.size() + t.size() - 1); for (int i = 0; i < (int)s.size(); ++i) for (int j = 0; j < (int)t.size(); ++j) ret[i + j] += i64(s[i]) * t[j]; return ret; } auto d0 = mul<T, mint0>(s, t); auto d1 = mul<T, mint1>(s, t); auto d2 = mul<T, mint2>(s, t); int n = d0.size(); vector<u128> ret(n); for (int i = 0; i < n; i++) { i64 n1 = d1[i].get(), n2 = d2[i].get(); i64 a = d0[i].get(); i64 b = (n1 + m1 - a) * r01 % m1; i64 c = ((n2 + m2 - a) * r02r12 + (m2 - b) * r12) % m2; ret[i] = a + b * w1 + u128(c) * w2; } return ret; } } // namespace ArbitraryNTT namespace MultiPrecisionIntegerImpl { struct TENS { static constexpr int offset = 30; constexpr TENS() : _tend() { _tend[offset] = 1; for (int i = 1; i <= offset; i++) { _tend[offset + i] = _tend[offset + i - 1] * 10.0; _tend[offset - i] = 1.0 / _tend[offset + i]; } } long double ten_ld(int n) const { assert(-offset <= n and n <= offset); return _tend[n + offset]; } private: long double _tend[offset * 2 + 1]; }; } // namespace MultiPrecisionIntegerImpl // 0 は neg=false, dat={} として扱う struct MultiPrecisionInteger { using M = MultiPrecisionInteger; inline constexpr static MultiPrecisionIntegerImpl::TENS tens = {}; static constexpr int D = 1000000000; static constexpr int logD = 9; bool neg; vector<int> dat; MultiPrecisionInteger() : neg(false), dat() {} MultiPrecisionInteger(bool n, const vector<int>& d) : neg(n), dat(d) {} template <typename I, enable_if_t<internal::is_broadly_integral_v<I>>* = nullptr> MultiPrecisionInteger(I x) : neg(false) { if constexpr (internal::is_broadly_signed_v<I>) { if (x < 0) neg = true, x = -x; } while (x) dat.push_back(x % D), x /= D; } MultiPrecisionInteger(const string& S) : neg(false) { assert(!S.empty()); if (S.size() == 1u && S[0] == '0') return; int l = 0; if (S[0] == '-') ++l, neg = true; for (int ie = S.size(); l < ie; ie -= logD) { int is = max(l, ie - logD); long long x = 0; for (int i = is; i < ie; i++) x = x * 10 + S[i] - '0'; dat.push_back(x); } while(!dat.empty() and dat.back() == 0) dat.pop_back(); } friend M operator+(const M& lhs, const M& rhs) { if (lhs.neg == rhs.neg) return {lhs.neg, _add(lhs.dat, rhs.dat)}; if (_leq(lhs.dat, rhs.dat)) { // |l| <= |r| auto c = _sub(rhs.dat, lhs.dat); bool n = _is_zero(c) ? false : rhs.neg; return {n, c}; } auto c = _sub(lhs.dat, rhs.dat); bool n = _is_zero(c) ? false : lhs.neg; return {n, c}; } friend M operator-(const M& lhs, const M& rhs) { return lhs + (-rhs); } friend M operator*(const M& lhs, const M& rhs) { auto c = _mul(lhs.dat, rhs.dat); bool n = _is_zero(c) ? false : (lhs.neg ^ rhs.neg); return {n, c}; } friend pair<M, M> divmod(const M& lhs, const M& rhs) { auto dm = _divmod_newton(lhs.dat, rhs.dat); bool dn = _is_zero(dm.first) ? false : lhs.neg != rhs.neg; bool mn = _is_zero(dm.second) ? false : lhs.neg; return {M{dn, dm.first}, M{mn, dm.second}}; } friend M operator/(const M& lhs, const M& rhs) { return divmod(lhs, rhs).first; } friend M operator%(const M& lhs, const M& rhs) { return divmod(lhs, rhs).second; } M& operator+=(const M& rhs) { return (*this) = (*this) + rhs; } M& operator-=(const M& rhs) { return (*this) = (*this) - rhs; } M& operator*=(const M& rhs) { return (*this) = (*this) * rhs; } M& operator/=(const M& rhs) { return (*this) = (*this) / rhs; } M& operator%=(const M& rhs) { return (*this) = (*this) % rhs; } M operator-() const { if (is_zero()) return *this; return {!neg, dat}; } M operator+() const { return *this; } friend M abs(const M& m) { return {false, m.dat}; } bool is_zero() const { return _is_zero(dat); } friend bool operator==(const M& lhs, const M& rhs) { return lhs.neg == rhs.neg && lhs.dat == rhs.dat; } friend bool operator!=(const M& lhs, const M& rhs) { return lhs.neg != rhs.neg || lhs.dat != rhs.dat; } friend bool operator<(const M& lhs, const M& rhs) { if (lhs == rhs) return false; return _neq_lt(lhs, rhs); } friend bool operator<=(const M& lhs, const M& rhs) { if (lhs == rhs) return true; return _neq_lt(lhs, rhs); } friend bool operator>(const M& lhs, const M& rhs) { if (lhs == rhs) return false; return _neq_lt(rhs, lhs); } friend bool operator>=(const M& lhs, const M& rhs) { if (lhs == rhs) return true; return _neq_lt(rhs, lhs); } // a * 10^b (1 <= |a| < 10) の形で渡す // 相対誤差:10^{-16} ~ 10^{-19} 程度 (処理系依存) pair<long double, int> dfp() const { if (is_zero()) return {0, 0}; int l = max<int>(0, _size() - 3); int b = logD * l; string prefix{}; for (int i = _size() - 1; i >= l; i--) { prefix += _itos(dat[i], i != _size() - 1); } b += prefix.size() - 1; long double a = 0; for (auto& c : prefix) a = a * 10.0 + (c - '0'); a *= tens.ten_ld(-((int)prefix.size()) + 1); a = clamp<long double>(a, 1.0, nextafterl(10.0, 1.0)); if (neg) a = -a; return {a, b}; } string to_string() const { if (is_zero()) return "0"; string res; if (neg) res.push_back('-'); for (int i = _size() - 1; i >= 0; i--) { res += _itos(dat[i], i != _size() - 1); } return res; } long double to_ld() const { auto [a, b] = dfp(); if (-tens.offset <= b and b <= tens.offset) { return a * tens.ten_ld(b); } return a * powl(10, b); } long long to_ll() const { long long res = _to_ll(dat); return neg ? -res : res; } __int128_t to_i128() const { __int128_t res = _to_i128(dat); return neg ? -res : res; } friend istream& operator>>(istream& is, M& m) { string s; is >> s; m = M{s}; return is; } friend ostream& operator<<(ostream& os, const M& m) { return os << m.to_string(); } // 内部の関数をテスト static void _test_private_function(const M&, const M&); private: // size int _size() const { return dat.size(); } // a == b static bool _eq(const vector<int>& a, const vector<int>& b) { return a == b; } // a < b static bool _lt(const vector<int>& a, const vector<int>& b) { if (a.size() != b.size()) return a.size() < b.size(); for (int i = a.size() - 1; i >= 0; i--) { if (a[i] != b[i]) return a[i] < b[i]; } return false; } // a <= b static bool _leq(const vector<int>& a, const vector<int>& b) { return _eq(a, b) || _lt(a, b); } // a < b (s.t. a != b) static bool _neq_lt(const M& lhs, const M& rhs) { assert(lhs != rhs); if (lhs.neg != rhs.neg) return lhs.neg; bool f = _lt(lhs.dat, rhs.dat); if (f) return !lhs.neg; return lhs.neg; } // a == 0 static bool _is_zero(const vector<int>& a) { return a.empty(); } // a == 1 static bool _is_one(const vector<int>& a) { return (int)a.size() == 1 && a[0] == 1; } // 末尾 0 を削除 static void _shrink(vector<int>& a) { while (a.size() && a.back() == 0) a.pop_back(); } // 末尾 0 を削除 void _shrink() { while (_size() && dat.back() == 0) dat.pop_back(); } // a + b static vector<int> _add(const vector<int>& a, const vector<int>& b) { vector<int> c(max(a.size(), b.size()) + 1); for (int i = 0; i < (int)a.size(); i++) c[i] += a[i]; for (int i = 0; i < (int)b.size(); i++) c[i] += b[i]; for (int i = 0; i < (int)c.size() - 1; i++) { if (c[i] >= D) c[i] -= D, c[i + 1]++; } _shrink(c); return c; } // a - b static vector<int> _sub(const vector<int>& a, const vector<int>& b) { assert(_leq(b, a)); vector<int> c{a}; int borrow = 0; for (int i = 0; i < (int)a.size(); i++) { if (i < (int)b.size()) borrow += b[i]; c[i] -= borrow; borrow = 0; if (c[i] < 0) c[i] += D, borrow = 1; } assert(borrow == 0); _shrink(c); return c; } // a * b (fft) static vector<int> _mul_fft(const vector<int>& a, const vector<int>& b) { if (a.empty() || b.empty()) return {}; auto m = ArbitraryNTT::multiply_u128(a, b); vector<int> c; c.reserve(m.size() + 3); __uint128_t x = 0; for (int i = 0;; i++) { if (i >= (int)m.size() && x == 0) break; if (i < (int)m.size()) x += m[i]; c.push_back(x % D); x /= D; } _shrink(c); return c; } // a * b (naive) static vector<int> _mul_naive(const vector<int>& a, const vector<int>& b) { if (a.empty() || b.empty()) return {}; vector<long long> prod(a.size() + b.size() - 1 + 1); for (int i = 0; i < (int)a.size(); i++) { for (int j = 0; j < (int)b.size(); j++) { long long p = 1LL * a[i] * b[j]; prod[i + j] += p; if (prod[i + j] >= (4LL * D * D)) { prod[i + j] -= 4LL * D * D; prod[i + j + 1] += 4LL * D; } } } vector<int> c(prod.size() + 1); long long x = 0; int i = 0; for (; i < (int)prod.size(); i++) x += prod[i], c[i] = x % D, x /= D; while (x) c[i] = x % D, x /= D, i++; _shrink(c); return c; } // a * b static vector<int> _mul(const vector<int>& a, const vector<int>& b) { if (_is_zero(a) || _is_zero(b)) return {}; if (_is_one(a)) return b; if (_is_one(b)) return a; if (min<int>(a.size(), b.size()) <= 128) { return a.size() < b.size() ? _mul_naive(b, a) : _mul_naive(a, b); } return _mul_fft(a, b); } // 0 <= A < 1e18, 1 <= B < 1e9 static pair<vector<int>, vector<int>> _divmod_li(const vector<int>& a, const vector<int>& b) { assert(0 <= (int)a.size() && (int)a.size() <= 2); assert((int)b.size() == 1); long long va = _to_ll(a); int vb = b[0]; return {_integer_to_vec(va / vb), _integer_to_vec(va % vb)}; } // 0 <= A < 1e18, 1 <= B < 1e18 static pair<vector<int>, vector<int>> _divmod_ll(const vector<int>& a, const vector<int>& b) { assert(0 <= (int)a.size() && (int)a.size() <= 2); assert(1 <= (int)b.size() && (int)b.size() <= 2); long long va = _to_ll(a), vb = _to_ll(b); return {_integer_to_vec(va / vb), _integer_to_vec(va % vb)}; } // 1 <= B < 1e9 static pair<vector<int>, vector<int>> _divmod_1e9(const vector<int>& a, const vector<int>& b) { assert((int)b.size() == 1); if (b[0] == 1) return {a, {}}; if ((int)a.size() <= 2) return _divmod_li(a, b); vector<int> quo(a.size()); long long d = 0; int b0 = b[0]; for (int i = a.size() - 1; i >= 0; i--) { d = d * D + a[i]; assert(d < 1LL * D * b0); int q = d / b0, r = d % b0; quo[i] = q, d = r; } _shrink(quo); return {quo, d ? vector<int>{int(d)} : vector<int>{}}; } // 0 <= A, 1 <= B static pair<vector<int>, vector<int>> _divmod_naive(const vector<int>& a, const vector<int>& b) { if (_is_zero(b)) { cerr << "Divide by Zero Exception" << endl; exit(1); } assert(1 <= (int)b.size()); if ((int)b.size() == 1) return _divmod_1e9(a, b); if (max<int>(a.size(), b.size()) <= 2) return _divmod_ll(a, b); if (_lt(a, b)) return {{}, a}; // B >= 1e9, A >= B int norm = D / (b.back() + 1); vector<int> x = _mul(a, {norm}); vector<int> y = _mul(b, {norm}); int yb = y.back(); vector<int> quo(x.size() - y.size() + 1); vector<int> rem(x.end() - y.size(), x.end()); for (int i = quo.size() - 1; i >= 0; i--) { if (rem.size() < y.size()) { // do nothing } else if (rem.size() == y.size()) { if (_leq(y, rem)) { quo[i] = 1, rem = _sub(rem, y); } } else { assert(y.size() + 1 == rem.size()); long long rb = 1LL * rem[rem.size() - 1] * D + rem[rem.size() - 2]; int q = rb / yb; vector<int> yq = _mul(y, {q}); // 真の商は q-2 以上 q+1 以下だが自信が無いので念のため while を回す while (_lt(rem, yq)) q--, yq = _sub(yq, y); rem = _sub(rem, yq); while (_leq(y, rem)) q++, rem = _sub(rem, y); quo[i] = q; } if (i) rem.insert(begin(rem), x[i - 1]); } _shrink(quo), _shrink(rem); auto [q2, r2] = _divmod_1e9(rem, {norm}); assert(_is_zero(r2)); return {quo, q2}; } // 0 <= A, 1 <= B static pair<vector<int>, vector<int>> _divmod_dc(const vector<int>& a, const vector<int>& b); // 1 / a を 絶対誤差 B^{-deg} で求める static vector<int> _calc_inv(const vector<int>& a, int deg) { assert(!a.empty() && D / 2 <= a.back() and a.back() < D); int k = deg, c = a.size(); while (k > 64) k = (k + 1) / 2; vector<int> z(c + k + 1); z.back() = 1; z = _divmod_naive(z, a).first; while (k < deg) { vector<int> s = _mul(z, z); s.insert(begin(s), 0); int d = min(c, 2 * k + 1); vector<int> t{end(a) - d, end(a)}, u = _mul(s, t); u.erase(begin(u), begin(u) + d); vector<int> w(k + 1), w2 = _add(z, z); copy(begin(w2), end(w2), back_inserter(w)); z = _sub(w, u); z.erase(begin(z)); k *= 2; } z.erase(begin(z), begin(z) + k - deg); return z; } static pair<vector<int>, vector<int>> _divmod_newton(const vector<int>& a, const vector<int>& b) { if (_is_zero(b)) { cerr << "Divide by Zero Exception" << endl; exit(1); } if ((int)b.size() <= 64) return _divmod_naive(a, b); if ((int)a.size() - (int)b.size() <= 64) return _divmod_naive(a, b); int norm = D / (b.back() + 1); vector<int> x = _mul(a, {norm}); vector<int> y = _mul(b, {norm}); int s = x.size(), t = y.size(); int deg = s - t + 2; vector<int> z = _calc_inv(y, deg); vector<int> q = _mul(x, z); q.erase(begin(q), begin(q) + t + deg); vector<int> yq = _mul(y, {q}); while (_lt(x, yq)) q = _sub(q, {1}), yq = _sub(yq, y); vector<int> r = _sub(x, yq); while (_leq(y, r)) q = _add(q, {1}), r = _sub(r, y); _shrink(q), _shrink(r); auto [q2, r2] = _divmod_1e9(r, {norm}); assert(_is_zero(r2)); return {q, q2}; } // int -> string // 先頭かどうかに応じて zero padding するかを決める static string _itos(int x, bool zero_padding) { assert(0 <= x && x < D); string res; for (int i = 0; i < logD; i++) { res.push_back('0' + x % 10), x /= 10; } if (!zero_padding) { while (res.size() && res.back() == '0') res.pop_back(); assert(!res.empty()); } reverse(begin(res), end(res)); return res; } // convert ll to vec template <typename I, enable_if_t<internal::is_broadly_integral_v<I>>* = nullptr> static vector<int> _integer_to_vec(I x) { if constexpr (internal::is_broadly_signed_v<I>) { assert(x >= 0); } vector<int> res; while (x) res.push_back(x % D), x /= D; return res; } static long long _to_ll(const vector<int>& a) { long long res = 0; for (int i = (int)a.size() - 1; i >= 0; i--) res = res * D + a[i]; return res; } static __int128_t _to_i128(const vector<int>& a) { __int128_t res = 0; for (int i = (int)a.size() - 1; i >= 0; i--) res = res * D + a[i]; return res; } static void _dump(const vector<int>& a, string s = "") { if (!s.empty()) cerr << s << " : "; cerr << "{ "; for (int i = 0; i < (int)a.size(); i++) cerr << a[i] << ", "; cerr << "}" << endl; } }; using bigint = MultiPrecisionInteger; bigint gcdd(bigint a,bigint b){ if(b==0) return a; return gcdd(b,a%b); } void solve(){ bigint A,B,C;cin>>A>>B>>C; vector<bigint> ruiA(9),ruiC(9); { ruiC[0]=C; for(int q=1;q<=8;q++) ruiC[q]=ruiC[q-1]*ruiC[q-1]; bigint g=gcdd(A,ruiC[8]); A=gcdd(A,g); } ll def=0; { for(int q=8;q>=0;q--){ if(A%ruiC[q]==0){ def+=(1<<q); A/=ruiC[q]; } } } { ruiA[0]=A; for(int q=1;q<=8;q++) ruiA[q]=ruiA[q-1]*ruiA[q-1]; } bigint X; vl CN(275); X=1; for(int i=0;i<270;i++){ X*=A; while(X%C==0){ CN[i]++; X/=C; } CN[i]+=def; } bigint mo; mo=998244353; for(int syu=1;syu<=200;syu++){ bool ok=true; for(int i=syu;i<270;i++) ok&=(CN[i]==CN[i-syu]); if(ok){ bigint res=0; for(int i=0;i<B%syu;i++) res+=CN[i]; for(int i=0;i<syu;i++) res+=CN[i]*(B/syu); res%=mo; cout<<res<<"\n"; return; } } return; } int main(){ std::ifstream in("text.txt"); std::cin.rdbuf(in.rdbuf()); cin.tie(0); ios::sync_with_stdio(false); int Q;cin>>Q; while(Q--){ solve(); } }