結果
| 問題 |
No.3186 Big Order
|
| コンテスト | |
| ユーザー |
Rubikun
|
| 提出日時 | 2025-06-20 22:07:40 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 54,696 bytes |
| コンパイル時間 | 5,408 ms |
| コンパイル使用メモリ | 291,656 KB |
| 実行使用メモリ | 7,844 KB |
| 最終ジャッジ日時 | 2025-06-20 22:07:55 |
| 合計ジャッジ時間 | 15,271 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 3 TLE * 1 -- * 30 |
コンパイルメッセージ
main.cpp:792:9: warning: #pragma once in main file
792 | #pragma once
| ^~~~
main.cpp:803:9: warning: #pragma once in main file
803 | #pragma once
| ^~~~
main.cpp:852:9: warning: #pragma once in main file
852 | #pragma once
| ^~~~
main.cpp:956:9: warning: #pragma once in main file
956 | #pragma once
| ^~~~
main.cpp:1181:9: warning: #pragma once in main file
1181 | #pragma once
| ^~~~
ソースコード
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }
#define vi vector<int>
#define vl vector<ll>
#define vii vector<pair<int,int>>
#define vll vector<pair<ll,ll>>
#define vvi vector<vector<int>>
#define vvl vector<vector<ll>>
#define vvii vector<vector<pair<int,int>>>
#define vvll vector<vector<pair<ll,ll>>>
#define vst vector<string>
#define pii pair<int,int>
#define pll pair<ll,ll>
#define pb push_back
#define all(x) (x).begin(),(x).end()
#define mkunique(x) sort(all(x));(x).erase(unique(all(x)),(x).end())
#define fi first
#define se second
#define mp make_pair
#define si(x) int(x.size())
const int mod=998244353,MAX=300005,INF=15<<26;
//modint+畳み込み+逆元テーブル
// from: https://gist.github.com/yosupo06/ddd51afb727600fd95d9d8ad6c3c80c9
// (based on AtCoder STL)
#include <algorithm>
#include <array>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
} // namespace internal
} // namespace atcoder
#include <utility>
namespace atcoder {
namespace internal {
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
struct barrett {
unsigned int _m;
unsigned long long im;
barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
unsigned int umod() const { return _m; }
unsigned int mul(unsigned int a, unsigned int b) const {
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
for (long long a : {2, 7, 61}) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if (m0 < 0) m0 += b / s;
return {s, m0};
}
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <type_traits>
#include <vector>
namespace atcoder {
namespace internal {
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
static constexpr int g = internal::primitive_root<mint::mod()>;
int n = int(a.size());
int h = internal::ceil_pow2(n);
static bool first = true;
static mint sum_e[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]
if (first) {
first = false;
mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1
int cnt2 = bsf(mint::mod() - 1);
mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
for (int i = cnt2; i >= 2; i--) {
es[i - 2] = e;
ies[i - 2] = ie;
e *= e;
ie *= ie;
}
mint now = 1;
for (int i = 0; i < cnt2 - 2; i++) {
sum_e[i] = es[i] * now;
now *= ies[i];
}
}
for (int ph = 1; ph <= h; ph++) {
int w = 1 << (ph - 1), p = 1 << (h - ph);
mint now = 1;
for (int s = 0; s < w; s++) {
int offset = s << (h - ph + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p] * now;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
now *= sum_e[bsf(~(unsigned int)(s))];
}
}
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
static constexpr int g = internal::primitive_root<mint::mod()>;
int n = int(a.size());
int h = internal::ceil_pow2(n);
static bool first = true;
static mint sum_ie[30]; // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]
if (first) {
first = false;
mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1
int cnt2 = bsf(mint::mod() - 1);
mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
for (int i = cnt2; i >= 2; i--) {
es[i - 2] = e;
ies[i - 2] = ie;
e *= e;
ie *= ie;
}
mint now = 1;
for (int i = 0; i < cnt2 - 2; i++) {
sum_ie[i] = ies[i] * now;
now *= es[i];
}
}
for (int ph = h; ph >= 1; ph--) {
int w = 1 << (ph - 1), p = 1 << (h - ph);
mint inow = 1;
for (int s = 0; s < w; s++) {
int offset = s << (h - ph + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p];
a[i + offset] = l + r;
a[i + offset + p] =
(unsigned long long)(mint::mod() + l.val() - r.val()) *
inow.val();
}
inow *= sum_ie[bsf(~(unsigned int)(s))];
}
}
}
} // namespace internal
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
if (std::min(n, m) <= 60) {
if (n < m) {
std::swap(n, m);
std::swap(a, b);
}
std::vector<mint> ans(n + m - 1);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
ans[i + j] += a[i] * b[j];
}
}
return ans;
}
int z = 1 << internal::ceil_pow2(n + m - 1);
a.resize(z);
internal::butterfly(a);
b.resize(z);
internal::butterfly(b);
for (int i = 0; i < z; i++) {
a[i] *= b[i];
}
internal::butterfly_inv(a);
a.resize(n + m - 1);
mint iz = mint(z).inv();
for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
return a;
}
template <unsigned int mod = 998244353,
class T,
std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
using mint = static_modint<mod>;
std::vector<mint> a2(n), b2(m);
for (int i = 0; i < n; i++) {
a2[i] = mint(a[i]);
}
for (int i = 0; i < m; i++) {
b2[i] = mint(b[i]);
}
auto c2 = convolution(move(a2), move(b2));
std::vector<T> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
c[i] = c2[i].val();
}
return c;
}
std::vector<long long> convolution_ll(const std::vector<long long>& a,
const std::vector<long long>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
static constexpr unsigned long long MOD1 = 754974721; // 2^24
static constexpr unsigned long long MOD2 = 167772161; // 2^25
static constexpr unsigned long long MOD3 = 469762049; // 2^26
static constexpr unsigned long long M2M3 = MOD2 * MOD3;
static constexpr unsigned long long M1M3 = MOD1 * MOD3;
static constexpr unsigned long long M1M2 = MOD1 * MOD2;
static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;
static constexpr unsigned long long i1 =
internal::inv_gcd(MOD2 * MOD3, MOD1).second;
static constexpr unsigned long long i2 =
internal::inv_gcd(MOD1 * MOD3, MOD2).second;
static constexpr unsigned long long i3 =
internal::inv_gcd(MOD1 * MOD2, MOD3).second;
auto c1 = convolution<MOD1>(a, b);
auto c2 = convolution<MOD2>(a, b);
auto c3 = convolution<MOD3>(a, b);
std::vector<long long> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
unsigned long long x = 0;
x += (c1[i] * i1) % MOD1 * M2M3;
x += (c2[i] * i2) % MOD2 * M1M3;
x += (c3[i] * i3) % MOD3 * M1M2;
long long diff =
c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
if (diff < 0) diff += MOD1;
static constexpr unsigned long long offset[5] = {
0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
x -= offset[diff % 5];
c[i] = x;
}
return c;
}
} // namespace atcoder
using mint=atcoder::modint998244353;
vector<mint> inv,fac,finv;
void make(){
inv.resize(MAX);
fac.resize(MAX);
finv.resize(MAX);
fac[0]=fac[1]=1;
finv[0]=finv[1]=1;
inv[1]=1;
for(int i=2;i<MAX;i++){
inv[i]=-inv[mod%i]*(mod/i);
fac[i]=fac[i-1]*i;
finv[i]=finv[i-1]*inv[i];
}
}
mint comb(ll a,ll b){
if(a<b) return 0;
return fac[a]*finv[b]*finv[a-b];
}
mint perm(ll a,ll b){
if(a<b) return 0;
return fac[a]*finv[a-b];
}
//bigint
// https://nyaannyaan.github.io/library/math/bigint.hpp.html
#pragma once
#include <algorithm>
#include <cassert>
#include <cmath>
#include <iostream>
#include <tuple>
#include <utility>
#include <vector>
using namespace std;
#pragma once
#include <type_traits>
using namespace std;
namespace internal {
template <typename T>
using is_broadly_integral =
typename conditional_t<is_integral_v<T> || is_same_v<T, __int128_t> ||
is_same_v<T, __uint128_t>,
true_type, false_type>::type;
template <typename T>
using is_broadly_signed =
typename conditional_t<is_signed_v<T> || is_same_v<T, __int128_t>,
true_type, false_type>::type;
template <typename T>
using is_broadly_unsigned =
typename conditional_t<is_unsigned_v<T> || is_same_v<T, __uint128_t>,
true_type, false_type>::type;
#define ENABLE_VALUE(x) \
template <typename T> \
constexpr bool x##_v = x<T>::value;
ENABLE_VALUE(is_broadly_integral);
ENABLE_VALUE(is_broadly_signed);
ENABLE_VALUE(is_broadly_unsigned);
#undef ENABLE_VALUE
#define ENABLE_HAS_TYPE(var) \
template <class, class = void> \
struct has_##var : false_type {}; \
template <class T> \
struct has_##var<T, void_t<typename T::var>> : true_type {}; \
template <class T> \
constexpr auto has_##var##_v = has_##var<T>::value;
#define ENABLE_HAS_VAR(var) \
template <class, class = void> \
struct has_##var : false_type {}; \
template <class T> \
struct has_##var<T, void_t<decltype(T::var)>> : true_type {}; \
template <class T> \
constexpr auto has_##var##_v = has_##var<T>::value;
} // namespace internal
#pragma once
template <uint32_t mod>
struct LazyMontgomeryModInt {
using mint = LazyMontgomeryModInt;
using i32 = int32_t;
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 get_r() {
u32 ret = mod;
for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
return ret;
}
static constexpr u32 r = get_r();
static constexpr u32 n2 = -u64(mod) % mod;
static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
static_assert(r * mod == 1, "this code has bugs.");
u32 a;
constexpr LazyMontgomeryModInt() : a(0) {}
constexpr LazyMontgomeryModInt(const int64_t &b)
: a(reduce(u64(b % mod + mod) * n2)){};
static constexpr u32 reduce(const u64 &b) {
return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
}
constexpr mint &operator+=(const mint &b) {
if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
return *this;
}
constexpr mint &operator-=(const mint &b) {
if (i32(a -= b.a) < 0) a += 2 * mod;
return *this;
}
constexpr mint &operator*=(const mint &b) {
a = reduce(u64(a) * b.a);
return *this;
}
constexpr mint &operator/=(const mint &b) {
*this *= b.inverse();
return *this;
}
constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
constexpr bool operator==(const mint &b) const {
return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
}
constexpr bool operator!=(const mint &b) const {
return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
}
constexpr mint operator-() const { return mint() - mint(*this); }
constexpr mint operator+() const { return mint(*this); }
constexpr mint pow(u64 n) const {
mint ret(1), mul(*this);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
constexpr mint inverse() const {
int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0;
while (y > 0) {
t = x / y;
x -= t * y, u -= t * v;
tmp = x, x = y, y = tmp;
tmp = u, u = v, v = tmp;
}
return mint{u};
}
friend ostream &operator<<(ostream &os, const mint &b) {
return os << b.get();
}
friend istream &operator>>(istream &is, mint &b) {
int64_t t;
is >> t;
b = LazyMontgomeryModInt<mod>(t);
return (is);
}
constexpr u32 get() const {
u32 ret = reduce(a);
return ret >= mod ? ret - mod : ret;
}
static constexpr u32 get_mod() { return mod; }
};
#pragma once
template <typename mint>
struct NTT {
static constexpr uint32_t get_pr() {
uint32_t _mod = mint::get_mod();
using u64 = uint64_t;
u64 ds[32] = {};
int idx = 0;
u64 m = _mod - 1;
for (u64 i = 2; i * i <= m; ++i) {
if (m % i == 0) {
ds[idx++] = i;
while (m % i == 0) m /= i;
}
}
if (m != 1) ds[idx++] = m;
uint32_t _pr = 2;
while (1) {
int flg = 1;
for (int i = 0; i < idx; ++i) {
u64 a = _pr, b = (_mod - 1) / ds[i], r = 1;
while (b) {
if (b & 1) r = r * a % _mod;
a = a * a % _mod;
b >>= 1;
}
if (r == 1) {
flg = 0;
break;
}
}
if (flg == 1) break;
++_pr;
}
return _pr;
};
static constexpr uint32_t mod = mint::get_mod();
static constexpr uint32_t pr = get_pr();
static constexpr int level = __builtin_ctzll(mod - 1);
mint dw[level], dy[level];
void setwy(int k) {
mint w[level], y[level];
w[k - 1] = mint(pr).pow((mod - 1) / (1 << k));
y[k - 1] = w[k - 1].inverse();
for (int i = k - 2; i > 0; --i)
w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1];
dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2];
for (int i = 3; i < k; ++i) {
dw[i] = dw[i - 1] * y[i - 2] * w[i];
dy[i] = dy[i - 1] * w[i - 2] * y[i];
}
}
NTT() { setwy(level); }
void fft4(vector<mint> &a, int k) {
if ((int)a.size() <= 1) return;
if (k == 1) {
mint a1 = a[1];
a[1] = a[0] - a[1];
a[0] = a[0] + a1;
return;
}
if (k & 1) {
int v = 1 << (k - 1);
for (int j = 0; j < v; ++j) {
mint ajv = a[j + v];
a[j + v] = a[j] - ajv;
a[j] += ajv;
}
}
int u = 1 << (2 + (k & 1));
int v = 1 << (k - 2 - (k & 1));
mint one = mint(1);
mint imag = dw[1];
while (v) {
// jh = 0
{
int j0 = 0;
int j1 = v;
int j2 = j1 + v;
int j3 = j2 + v;
for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {
mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
mint t0p2 = t0 + t2, t1p3 = t1 + t3;
mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3;
a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3;
}
}
// jh >= 1
mint ww = one, xx = one * dw[2], wx = one;
for (int jh = 4; jh < u;) {
ww = xx * xx, wx = ww * xx;
int j0 = jh * v;
int je = j0 + v;
int j2 = je + v;
for (; j0 < je; ++j0, ++j2) {
mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww,
t3 = a[j2 + v] * wx;
mint t0p2 = t0 + t2, t1p3 = t1 + t3;
mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3;
a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3;
}
xx *= dw[__builtin_ctzll((jh += 4))];
}
u <<= 2;
v >>= 2;
}
}
void ifft4(vector<mint> &a, int k) {
if ((int)a.size() <= 1) return;
if (k == 1) {
mint a1 = a[1];
a[1] = a[0] - a[1];
a[0] = a[0] + a1;
return;
}
int u = 1 << (k - 2);
int v = 1;
mint one = mint(1);
mint imag = dy[1];
while (u) {
// jh = 0
{
int j0 = 0;
int j1 = v;
int j2 = v + v;
int j3 = j2 + v;
for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {
mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
mint t0p1 = t0 + t1, t2p3 = t2 + t3;
mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag;
a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3;
a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3;
}
}
// jh >= 1
mint ww = one, xx = one * dy[2], yy = one;
u <<= 2;
for (int jh = 4; jh < u;) {
ww = xx * xx, yy = xx * imag;
int j0 = jh * v;
int je = j0 + v;
int j2 = je + v;
for (; j0 < je; ++j0, ++j2) {
mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v];
mint t0p1 = t0 + t1, t2p3 = t2 + t3;
mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy;
a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww;
a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww;
}
xx *= dy[__builtin_ctzll(jh += 4)];
}
u >>= 4;
v <<= 2;
}
if (k & 1) {
u = 1 << (k - 1);
for (int j = 0; j < u; ++j) {
mint ajv = a[j] - a[j + u];
a[j] += a[j + u];
a[j + u] = ajv;
}
}
}
void ntt(vector<mint> &a) {
if ((int)a.size() <= 1) return;
fft4(a, __builtin_ctz(a.size()));
}
void intt(vector<mint> &a) {
if ((int)a.size() <= 1) return;
ifft4(a, __builtin_ctz(a.size()));
mint iv = mint(a.size()).inverse();
for (auto &x : a) x *= iv;
}
vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) {
int l = a.size() + b.size() - 1;
if (min<int>(a.size(), b.size()) <= 40) {
vector<mint> s(l);
for (int i = 0; i < (int)a.size(); ++i)
for (int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j];
return s;
}
int k = 2, M = 4;
while (M < l) M <<= 1, ++k;
setwy(k);
vector<mint> s(M);
for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i];
fft4(s, k);
if (a.size() == b.size() && a == b) {
for (int i = 0; i < M; ++i) s[i] *= s[i];
} else {
vector<mint> t(M);
for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i];
fft4(t, k);
for (int i = 0; i < M; ++i) s[i] *= t[i];
}
ifft4(s, k);
s.resize(l);
mint invm = mint(M).inverse();
for (int i = 0; i < l; ++i) s[i] *= invm;
return s;
}
void ntt_doubling(vector<mint> &a) {
int M = (int)a.size();
auto b = a;
intt(b);
mint r = 1, zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1));
for (int i = 0; i < M; i++) b[i] *= r, r *= zeta;
ntt(b);
copy(begin(b), end(b), back_inserter(a));
}
};
#pragma once
namespace ArbitraryNTT {
using i64 = int64_t;
using u128 = __uint128_t;
constexpr int32_t m0 = 167772161;
constexpr int32_t m1 = 469762049;
constexpr int32_t m2 = 754974721;
using mint0 = LazyMontgomeryModInt<m0>;
using mint1 = LazyMontgomeryModInt<m1>;
using mint2 = LazyMontgomeryModInt<m2>;
constexpr int r01 = mint1(m0).inverse().get();
constexpr int r02 = mint2(m0).inverse().get();
constexpr int r12 = mint2(m1).inverse().get();
constexpr int r02r12 = i64(r02) * r12 % m2;
constexpr i64 w1 = m0;
constexpr i64 w2 = i64(m0) * m1;
template <typename T, typename submint>
vector<submint> mul(const vector<T> &a, const vector<T> &b) {
static NTT<submint> ntt;
vector<submint> s(a.size()), t(b.size());
for (int i = 0; i < (int)a.size(); ++i) s[i] = i64(a[i] % submint::get_mod());
for (int i = 0; i < (int)b.size(); ++i) t[i] = i64(b[i] % submint::get_mod());
return ntt.multiply(s, t);
}
template <typename T>
vector<int> multiply(const vector<T> &s, const vector<T> &t, int mod) {
auto d0 = mul<T, mint0>(s, t);
auto d1 = mul<T, mint1>(s, t);
auto d2 = mul<T, mint2>(s, t);
int n = d0.size();
vector<int> ret(n);
const int W1 = w1 % mod;
const int W2 = w2 % mod;
for (int i = 0; i < n; i++) {
int n1 = d1[i].get(), n2 = d2[i].get(), a = d0[i].get();
int b = i64(n1 + m1 - a) * r01 % m1;
int c = (i64(n2 + m2 - a) * r02r12 + i64(m2 - b) * r12) % m2;
ret[i] = (i64(a) + i64(b) * W1 + i64(c) * W2) % mod;
}
return ret;
}
template <typename mint>
vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) {
if (a.size() == 0 && b.size() == 0) return {};
if (min<int>(a.size(), b.size()) < 128) {
vector<mint> ret(a.size() + b.size() - 1);
for (int i = 0; i < (int)a.size(); ++i)
for (int j = 0; j < (int)b.size(); ++j) ret[i + j] += a[i] * b[j];
return ret;
}
vector<int> s(a.size()), t(b.size());
for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i].get();
for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i].get();
vector<int> u = multiply<int>(s, t, mint::get_mod());
vector<mint> ret(u.size());
for (int i = 0; i < (int)u.size(); ++i) ret[i] = mint(u[i]);
return ret;
}
template <typename T>
vector<u128> multiply_u128(const vector<T> &s, const vector<T> &t) {
if (s.size() == 0 && t.size() == 0) return {};
if (min<int>(s.size(), t.size()) < 128) {
vector<u128> ret(s.size() + t.size() - 1);
for (int i = 0; i < (int)s.size(); ++i)
for (int j = 0; j < (int)t.size(); ++j) ret[i + j] += i64(s[i]) * t[j];
return ret;
}
auto d0 = mul<T, mint0>(s, t);
auto d1 = mul<T, mint1>(s, t);
auto d2 = mul<T, mint2>(s, t);
int n = d0.size();
vector<u128> ret(n);
for (int i = 0; i < n; i++) {
i64 n1 = d1[i].get(), n2 = d2[i].get();
i64 a = d0[i].get();
i64 b = (n1 + m1 - a) * r01 % m1;
i64 c = ((n2 + m2 - a) * r02r12 + (m2 - b) * r12) % m2;
ret[i] = a + b * w1 + u128(c) * w2;
}
return ret;
}
} // namespace ArbitraryNTT
namespace MultiPrecisionIntegerImpl {
struct TENS {
static constexpr int offset = 30;
constexpr TENS() : _tend() {
_tend[offset] = 1;
for (int i = 1; i <= offset; i++) {
_tend[offset + i] = _tend[offset + i - 1] * 10.0;
_tend[offset - i] = 1.0 / _tend[offset + i];
}
}
long double ten_ld(int n) const {
assert(-offset <= n and n <= offset);
return _tend[n + offset];
}
private:
long double _tend[offset * 2 + 1];
};
} // namespace MultiPrecisionIntegerImpl
// 0 は neg=false, dat={} として扱う
struct MultiPrecisionInteger {
using M = MultiPrecisionInteger;
inline constexpr static MultiPrecisionIntegerImpl::TENS tens = {};
static constexpr int D = 1000000000;
static constexpr int logD = 9;
bool neg;
vector<int> dat;
MultiPrecisionInteger() : neg(false), dat() {}
MultiPrecisionInteger(bool n, const vector<int>& d) : neg(n), dat(d) {}
template <typename I,
enable_if_t<internal::is_broadly_integral_v<I>>* = nullptr>
MultiPrecisionInteger(I x) : neg(false) {
if constexpr (internal::is_broadly_signed_v<I>) {
if (x < 0) neg = true, x = -x;
}
while (x) dat.push_back(x % D), x /= D;
}
MultiPrecisionInteger(const string& S) : neg(false) {
assert(!S.empty());
if (S.size() == 1u && S[0] == '0') return;
int l = 0;
if (S[0] == '-') ++l, neg = true;
for (int ie = S.size(); l < ie; ie -= logD) {
int is = max(l, ie - logD);
long long x = 0;
for (int i = is; i < ie; i++) x = x * 10 + S[i] - '0';
dat.push_back(x);
}
while(!dat.empty() and dat.back() == 0) dat.pop_back();
}
friend M operator+(const M& lhs, const M& rhs) {
if (lhs.neg == rhs.neg) return {lhs.neg, _add(lhs.dat, rhs.dat)};
if (_leq(lhs.dat, rhs.dat)) {
// |l| <= |r|
auto c = _sub(rhs.dat, lhs.dat);
bool n = _is_zero(c) ? false : rhs.neg;
return {n, c};
}
auto c = _sub(lhs.dat, rhs.dat);
bool n = _is_zero(c) ? false : lhs.neg;
return {n, c};
}
friend M operator-(const M& lhs, const M& rhs) { return lhs + (-rhs); }
friend M operator*(const M& lhs, const M& rhs) {
auto c = _mul(lhs.dat, rhs.dat);
bool n = _is_zero(c) ? false : (lhs.neg ^ rhs.neg);
return {n, c};
}
friend pair<M, M> divmod(const M& lhs, const M& rhs) {
auto dm = _divmod_newton(lhs.dat, rhs.dat);
bool dn = _is_zero(dm.first) ? false : lhs.neg != rhs.neg;
bool mn = _is_zero(dm.second) ? false : lhs.neg;
return {M{dn, dm.first}, M{mn, dm.second}};
}
friend M operator/(const M& lhs, const M& rhs) {
return divmod(lhs, rhs).first;
}
friend M operator%(const M& lhs, const M& rhs) {
return divmod(lhs, rhs).second;
}
M& operator+=(const M& rhs) { return (*this) = (*this) + rhs; }
M& operator-=(const M& rhs) { return (*this) = (*this) - rhs; }
M& operator*=(const M& rhs) { return (*this) = (*this) * rhs; }
M& operator/=(const M& rhs) { return (*this) = (*this) / rhs; }
M& operator%=(const M& rhs) { return (*this) = (*this) % rhs; }
M operator-() const {
if (is_zero()) return *this;
return {!neg, dat};
}
M operator+() const { return *this; }
friend M abs(const M& m) { return {false, m.dat}; }
bool is_zero() const { return _is_zero(dat); }
friend bool operator==(const M& lhs, const M& rhs) {
return lhs.neg == rhs.neg && lhs.dat == rhs.dat;
}
friend bool operator!=(const M& lhs, const M& rhs) {
return lhs.neg != rhs.neg || lhs.dat != rhs.dat;
}
friend bool operator<(const M& lhs, const M& rhs) {
if (lhs == rhs) return false;
return _neq_lt(lhs, rhs);
}
friend bool operator<=(const M& lhs, const M& rhs) {
if (lhs == rhs) return true;
return _neq_lt(lhs, rhs);
}
friend bool operator>(const M& lhs, const M& rhs) {
if (lhs == rhs) return false;
return _neq_lt(rhs, lhs);
}
friend bool operator>=(const M& lhs, const M& rhs) {
if (lhs == rhs) return true;
return _neq_lt(rhs, lhs);
}
// a * 10^b (1 <= |a| < 10) の形で渡す
// 相対誤差:10^{-16} ~ 10^{-19} 程度 (処理系依存)
pair<long double, int> dfp() const {
if (is_zero()) return {0, 0};
int l = max<int>(0, _size() - 3);
int b = logD * l;
string prefix{};
for (int i = _size() - 1; i >= l; i--) {
prefix += _itos(dat[i], i != _size() - 1);
}
b += prefix.size() - 1;
long double a = 0;
for (auto& c : prefix) a = a * 10.0 + (c - '0');
a *= tens.ten_ld(-((int)prefix.size()) + 1);
a = clamp<long double>(a, 1.0, nextafterl(10.0, 1.0));
if (neg) a = -a;
return {a, b};
}
string to_string() const {
if (is_zero()) return "0";
string res;
if (neg) res.push_back('-');
for (int i = _size() - 1; i >= 0; i--) {
res += _itos(dat[i], i != _size() - 1);
}
return res;
}
long double to_ld() const {
auto [a, b] = dfp();
if (-tens.offset <= b and b <= tens.offset) {
return a * tens.ten_ld(b);
}
return a * powl(10, b);
}
long long to_ll() const {
long long res = _to_ll(dat);
return neg ? -res : res;
}
__int128_t to_i128() const {
__int128_t res = _to_i128(dat);
return neg ? -res : res;
}
friend istream& operator>>(istream& is, M& m) {
string s;
is >> s;
m = M{s};
return is;
}
friend ostream& operator<<(ostream& os, const M& m) {
return os << m.to_string();
}
// 内部の関数をテスト
static void _test_private_function(const M&, const M&);
private:
// size
int _size() const { return dat.size(); }
// a == b
static bool _eq(const vector<int>& a, const vector<int>& b) { return a == b; }
// a < b
static bool _lt(const vector<int>& a, const vector<int>& b) {
if (a.size() != b.size()) return a.size() < b.size();
for (int i = a.size() - 1; i >= 0; i--) {
if (a[i] != b[i]) return a[i] < b[i];
}
return false;
}
// a <= b
static bool _leq(const vector<int>& a, const vector<int>& b) {
return _eq(a, b) || _lt(a, b);
}
// a < b (s.t. a != b)
static bool _neq_lt(const M& lhs, const M& rhs) {
assert(lhs != rhs);
if (lhs.neg != rhs.neg) return lhs.neg;
bool f = _lt(lhs.dat, rhs.dat);
if (f) return !lhs.neg;
return lhs.neg;
}
// a == 0
static bool _is_zero(const vector<int>& a) { return a.empty(); }
// a == 1
static bool _is_one(const vector<int>& a) {
return (int)a.size() == 1 && a[0] == 1;
}
// 末尾 0 を削除
static void _shrink(vector<int>& a) {
while (a.size() && a.back() == 0) a.pop_back();
}
// 末尾 0 を削除
void _shrink() {
while (_size() && dat.back() == 0) dat.pop_back();
}
// a + b
static vector<int> _add(const vector<int>& a, const vector<int>& b) {
vector<int> c(max(a.size(), b.size()) + 1);
for (int i = 0; i < (int)a.size(); i++) c[i] += a[i];
for (int i = 0; i < (int)b.size(); i++) c[i] += b[i];
for (int i = 0; i < (int)c.size() - 1; i++) {
if (c[i] >= D) c[i] -= D, c[i + 1]++;
}
_shrink(c);
return c;
}
// a - b
static vector<int> _sub(const vector<int>& a, const vector<int>& b) {
assert(_leq(b, a));
vector<int> c{a};
int borrow = 0;
for (int i = 0; i < (int)a.size(); i++) {
if (i < (int)b.size()) borrow += b[i];
c[i] -= borrow;
borrow = 0;
if (c[i] < 0) c[i] += D, borrow = 1;
}
assert(borrow == 0);
_shrink(c);
return c;
}
// a * b (fft)
static vector<int> _mul_fft(const vector<int>& a, const vector<int>& b) {
if (a.empty() || b.empty()) return {};
auto m = ArbitraryNTT::multiply_u128(a, b);
vector<int> c;
c.reserve(m.size() + 3);
__uint128_t x = 0;
for (int i = 0;; i++) {
if (i >= (int)m.size() && x == 0) break;
if (i < (int)m.size()) x += m[i];
c.push_back(x % D);
x /= D;
}
_shrink(c);
return c;
}
// a * b (naive)
static vector<int> _mul_naive(const vector<int>& a, const vector<int>& b) {
if (a.empty() || b.empty()) return {};
vector<long long> prod(a.size() + b.size() - 1 + 1);
for (int i = 0; i < (int)a.size(); i++) {
for (int j = 0; j < (int)b.size(); j++) {
long long p = 1LL * a[i] * b[j];
prod[i + j] += p;
if (prod[i + j] >= (4LL * D * D)) {
prod[i + j] -= 4LL * D * D;
prod[i + j + 1] += 4LL * D;
}
}
}
vector<int> c(prod.size() + 1);
long long x = 0;
int i = 0;
for (; i < (int)prod.size(); i++) x += prod[i], c[i] = x % D, x /= D;
while (x) c[i] = x % D, x /= D, i++;
_shrink(c);
return c;
}
// a * b
static vector<int> _mul(const vector<int>& a, const vector<int>& b) {
if (_is_zero(a) || _is_zero(b)) return {};
if (_is_one(a)) return b;
if (_is_one(b)) return a;
if (min<int>(a.size(), b.size()) <= 128) {
return a.size() < b.size() ? _mul_naive(b, a) : _mul_naive(a, b);
}
return _mul_fft(a, b);
}
// 0 <= A < 1e18, 1 <= B < 1e9
static pair<vector<int>, vector<int>> _divmod_li(const vector<int>& a,
const vector<int>& b) {
assert(0 <= (int)a.size() && (int)a.size() <= 2);
assert((int)b.size() == 1);
long long va = _to_ll(a);
int vb = b[0];
return {_integer_to_vec(va / vb), _integer_to_vec(va % vb)};
}
// 0 <= A < 1e18, 1 <= B < 1e18
static pair<vector<int>, vector<int>> _divmod_ll(const vector<int>& a,
const vector<int>& b) {
assert(0 <= (int)a.size() && (int)a.size() <= 2);
assert(1 <= (int)b.size() && (int)b.size() <= 2);
long long va = _to_ll(a), vb = _to_ll(b);
return {_integer_to_vec(va / vb), _integer_to_vec(va % vb)};
}
// 1 <= B < 1e9
static pair<vector<int>, vector<int>> _divmod_1e9(const vector<int>& a,
const vector<int>& b) {
assert((int)b.size() == 1);
if (b[0] == 1) return {a, {}};
if ((int)a.size() <= 2) return _divmod_li(a, b);
vector<int> quo(a.size());
long long d = 0;
int b0 = b[0];
for (int i = a.size() - 1; i >= 0; i--) {
d = d * D + a[i];
assert(d < 1LL * D * b0);
int q = d / b0, r = d % b0;
quo[i] = q, d = r;
}
_shrink(quo);
return {quo, d ? vector<int>{int(d)} : vector<int>{}};
}
// 0 <= A, 1 <= B
static pair<vector<int>, vector<int>> _divmod_naive(const vector<int>& a,
const vector<int>& b) {
if (_is_zero(b)) {
cerr << "Divide by Zero Exception" << endl;
exit(1);
}
assert(1 <= (int)b.size());
if ((int)b.size() == 1) return _divmod_1e9(a, b);
if (max<int>(a.size(), b.size()) <= 2) return _divmod_ll(a, b);
if (_lt(a, b)) return {{}, a};
// B >= 1e9, A >= B
int norm = D / (b.back() + 1);
vector<int> x = _mul(a, {norm});
vector<int> y = _mul(b, {norm});
int yb = y.back();
vector<int> quo(x.size() - y.size() + 1);
vector<int> rem(x.end() - y.size(), x.end());
for (int i = quo.size() - 1; i >= 0; i--) {
if (rem.size() < y.size()) {
// do nothing
} else if (rem.size() == y.size()) {
if (_leq(y, rem)) {
quo[i] = 1, rem = _sub(rem, y);
}
} else {
assert(y.size() + 1 == rem.size());
long long rb = 1LL * rem[rem.size() - 1] * D + rem[rem.size() - 2];
int q = rb / yb;
vector<int> yq = _mul(y, {q});
// 真の商は q-2 以上 q+1 以下だが自信が無いので念のため while を回す
while (_lt(rem, yq)) q--, yq = _sub(yq, y);
rem = _sub(rem, yq);
while (_leq(y, rem)) q++, rem = _sub(rem, y);
quo[i] = q;
}
if (i) rem.insert(begin(rem), x[i - 1]);
}
_shrink(quo), _shrink(rem);
auto [q2, r2] = _divmod_1e9(rem, {norm});
assert(_is_zero(r2));
return {quo, q2};
}
// 0 <= A, 1 <= B
static pair<vector<int>, vector<int>> _divmod_dc(const vector<int>& a,
const vector<int>& b);
// 1 / a を 絶対誤差 B^{-deg} で求める
static vector<int> _calc_inv(const vector<int>& a, int deg) {
assert(!a.empty() && D / 2 <= a.back() and a.back() < D);
int k = deg, c = a.size();
while (k > 64) k = (k + 1) / 2;
vector<int> z(c + k + 1);
z.back() = 1;
z = _divmod_naive(z, a).first;
while (k < deg) {
vector<int> s = _mul(z, z);
s.insert(begin(s), 0);
int d = min(c, 2 * k + 1);
vector<int> t{end(a) - d, end(a)}, u = _mul(s, t);
u.erase(begin(u), begin(u) + d);
vector<int> w(k + 1), w2 = _add(z, z);
copy(begin(w2), end(w2), back_inserter(w));
z = _sub(w, u);
z.erase(begin(z));
k *= 2;
}
z.erase(begin(z), begin(z) + k - deg);
return z;
}
static pair<vector<int>, vector<int>> _divmod_newton(const vector<int>& a,
const vector<int>& b) {
if (_is_zero(b)) {
cerr << "Divide by Zero Exception" << endl;
exit(1);
}
if ((int)b.size() <= 64) return _divmod_naive(a, b);
if ((int)a.size() - (int)b.size() <= 64) return _divmod_naive(a, b);
int norm = D / (b.back() + 1);
vector<int> x = _mul(a, {norm});
vector<int> y = _mul(b, {norm});
int s = x.size(), t = y.size();
int deg = s - t + 2;
vector<int> z = _calc_inv(y, deg);
vector<int> q = _mul(x, z);
q.erase(begin(q), begin(q) + t + deg);
vector<int> yq = _mul(y, {q});
while (_lt(x, yq)) q = _sub(q, {1}), yq = _sub(yq, y);
vector<int> r = _sub(x, yq);
while (_leq(y, r)) q = _add(q, {1}), r = _sub(r, y);
_shrink(q), _shrink(r);
auto [q2, r2] = _divmod_1e9(r, {norm});
assert(_is_zero(r2));
return {q, q2};
}
// int -> string
// 先頭かどうかに応じて zero padding するかを決める
static string _itos(int x, bool zero_padding) {
assert(0 <= x && x < D);
string res;
for (int i = 0; i < logD; i++) {
res.push_back('0' + x % 10), x /= 10;
}
if (!zero_padding) {
while (res.size() && res.back() == '0') res.pop_back();
assert(!res.empty());
}
reverse(begin(res), end(res));
return res;
}
// convert ll to vec
template <typename I,
enable_if_t<internal::is_broadly_integral_v<I>>* = nullptr>
static vector<int> _integer_to_vec(I x) {
if constexpr (internal::is_broadly_signed_v<I>) {
assert(x >= 0);
}
vector<int> res;
while (x) res.push_back(x % D), x /= D;
return res;
}
static long long _to_ll(const vector<int>& a) {
long long res = 0;
for (int i = (int)a.size() - 1; i >= 0; i--) res = res * D + a[i];
return res;
}
static __int128_t _to_i128(const vector<int>& a) {
__int128_t res = 0;
for (int i = (int)a.size() - 1; i >= 0; i--) res = res * D + a[i];
return res;
}
static void _dump(const vector<int>& a, string s = "") {
if (!s.empty()) cerr << s << " : ";
cerr << "{ ";
for (int i = 0; i < (int)a.size(); i++) cerr << a[i] << ", ";
cerr << "}" << endl;
}
};
using bigint = MultiPrecisionInteger;
bigint gcdd(bigint a,bigint b){
if(b==0) return a;
return gcdd(b,a%b);
}
void solve(){
bigint A,B,C;cin>>A>>B>>C;
vector<bigint> ruiA(9),ruiC(9);
{
ruiC[0]=C;
for(int q=1;q<=8;q++) ruiC[q]=ruiC[q-1]*ruiC[q-1];
bigint g=gcdd(A,ruiC[8]);
A=gcdd(A,g);
}
ll def=0;
{
for(int q=8;q>=0;q--){
if(A%ruiC[q]==0){
def+=(1<<q);
A/=ruiC[q];
}
}
}
{
ruiA[0]=A;
for(int q=1;q<=8;q++) ruiA[q]=ruiA[q-1]*ruiA[q-1];
}
bigint X;
vl CN(275,def);
X=1;
int now=-1;
while(now<270){
for(int t=8;t>=0;t--){
if((X*ruiA[t])%C==0){
}else{
now+=(1<<t);
X*=ruiA[t];
}
if(now>=270) break;
}
now++;
X*=A;
if(now>=270) break;
CN[now]++;
X/=C;
}
bigint mo;
mo=998244353;
for(int syu=1;syu<=200;syu++){
bool ok=true;
for(int i=syu;i<270;i++) ok&=(CN[i]==CN[i-syu]);
if(ok){
bigint res=0;
for(int i=0;i<B%syu;i++) res+=CN[i];
for(int i=0;i<syu;i++) res+=CN[i]*(B/syu);
res%=mo;
cout<<res<<"\n";
return;
}
}
return;
}
int main(){
std::ifstream in("text.txt");
std::cin.rdbuf(in.rdbuf());
cin.tie(0);
ios::sync_with_stdio(false);
int Q;cin>>Q;
while(Q--){
solve();
}
}
Rubikun