結果
| 問題 |
No.3187 Mingle
|
| コンテスト | |
| ユーザー |
akakimidori
|
| 提出日時 | 2025-06-20 23:26:24 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 76 ms / 2,500 ms |
| コード長 | 14,503 bytes |
| コンパイル時間 | 11,954 ms |
| コンパイル使用メモリ | 398,996 KB |
| 実行使用メモリ | 10,240 KB |
| 最終ジャッジ日時 | 2025-06-20 23:26:42 |
| 合計ジャッジ時間 | 14,843 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 30 |
コンパイルメッセージ
warning: unused import: `modint::*`
--> src/main.rs:368:5
|
368 | use modint::*;
| ^^^^^^^^^
|
= note: `#[warn(unused_imports)]` on by default
warning: type alias `M` is never used
--> src/main.rs:369:6
|
369 | type M = ModInt<StaticMod>;
| ^
|
= note: `#[warn(dead_code)]` on by default
warning: method `join` is never used
--> src/main.rs:89:12
|
88 | pub trait Join {
| ---- method in this trait
89 | fn join(self, sep: &str) -> String;
| ^^^^
ソースコード
fn main() {
input! {
n: usize,
p: u32,
}
type M = ModInt<StaticMod>;
StaticMod::set_modulo(p);
let sieve = Sieve::new(n);
let mut divisor = vec![];
let pc = precalc::Precalc::new(n);
let mut dp = vec![M::zero(); n + 1];
let mut imos = vec![M::zero(); n + 1];
for i in 3..=n {
sieve.factorize(i, &mut divisor);
imos[i] = imos[i] + imos[i - 1];
dp[i] += imos[i];
dp[i] = (M::one() + dp[i] * pc.inv(i)) * pc.inv(i - divisor.len()) * M::from(i);
let v = dp[i];
for &d in divisor.iter() {
let q = i / d;
imos[q * d] += v;
let r = (q + 1) * d;
if r <= n {
imos[r] -= v;
}
}
dp[i] = v;
}
println!("{}", dp[n]);
}
use modint::*;
// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
(source = $s:expr, $($r:tt)*) => {
let mut iter = $s.split_whitespace();
input_inner!{iter, $($r)*}
};
($($r:tt)*) => {
let s = {
use std::io::Read;
let mut s = String::new();
std::io::stdin().read_to_string(&mut s).unwrap();
s
};
let mut iter = s.split_whitespace();
input_inner!{iter, $($r)*}
};
}
#[macro_export]
macro_rules! input_inner {
($iter:expr) => {};
($iter:expr, ) => {};
($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($iter, $t);
input_inner!{$iter $($r)*}
};
}
#[macro_export]
macro_rules! read_value {
($iter:expr, ( $($t:tt),* )) => {
( $(read_value!($iter, $t)),* )
};
($iter:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
};
($iter:expr, chars) => {
read_value!($iter, String).chars().collect::<Vec<char>>()
};
($iter:expr, bytes) => {
read_value!($iter, String).bytes().collect::<Vec<u8>>()
};
($iter:expr, usize1) => {
read_value!($iter, usize) - 1
};
($iter:expr, $t:ty) => {
$iter.next().unwrap().parse::<$t>().expect("Parse error")
};
}
// ---------- end input macro ----------
mod util {
pub trait Join {
fn join(self, sep: &str) -> String;
}
impl<T, I> Join for I
where
I: Iterator<Item = T>,
T: std::fmt::Display,
{
fn join(self, sep: &str) -> String {
let mut s = String::new();
use std::fmt::*;
for (i, v) in self.enumerate() {
if i > 0 {
write!(&mut s, "{}", sep).ok();
}
write!(&mut s, "{}", v).ok();
}
s
}
}
}
mod modint {
use std::marker::*;
use std::ops::*;
pub trait Modulo {
fn modulo() -> u32;
fn im() -> u64;
fn reduce(z: u64) -> u32 {
let x = (z as u128 * Self::im() as u128 >> 64) as u32;
let mut v = z as u32 - x * Self::modulo();
if v >= Self::modulo() {
v += Self::modulo();
}
v
}
}
pub struct StaticMod;
static mut STATIC_MOD: u32 = 0;
static mut STATIC_MOD_IM: u64 = 0;
impl Modulo for StaticMod {
fn modulo() -> u32 {
unsafe { STATIC_MOD }
}
fn im() -> u64 {
unsafe { STATIC_MOD_IM }
}
}
#[allow(dead_code)]
impl StaticMod {
pub fn set_modulo(p: u32) {
unsafe {
STATIC_MOD = p;
STATIC_MOD_IM = (!0u64 / p as u64) + 1;
}
}
}
pub struct ModInt<T>(u32, PhantomData<T>);
impl<T> Clone for ModInt<T> {
fn clone(&self) -> Self {
ModInt::build(self.0)
}
}
impl<T> Copy for ModInt<T> {}
impl<T: Modulo> Add for ModInt<T> {
type Output = ModInt<T>;
fn add(self, rhs: Self) -> Self::Output {
let mut d = self.0 + rhs.0;
if d >= T::modulo() {
d -= T::modulo();
}
Self::build(d)
}
}
impl<T: Modulo> AddAssign for ModInt<T> {
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl<T: Modulo> Sub for ModInt<T> {
type Output = ModInt<T>;
fn sub(self, rhs: Self) -> Self::Output {
let mut d = self.0 - rhs.0;
if self.0 < rhs.0 {
d += T::modulo();
}
Self::build(d)
}
}
impl<T: Modulo> SubAssign for ModInt<T> {
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl<T: Modulo> Mul for ModInt<T> {
type Output = ModInt<T>;
fn mul(self, rhs: Self) -> Self::Output {
Self::build(T::reduce(self.0 as u64 * rhs.0 as u64))
}
}
impl<T: Modulo> MulAssign for ModInt<T> {
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl<T: Modulo> Neg for ModInt<T> {
type Output = ModInt<T>;
fn neg(self) -> Self::Output {
if self.0 == 0 {
Self::zero()
} else {
Self::build(T::modulo() - self.0)
}
}
}
impl<T: Modulo> std::fmt::Display for ModInt<T> {
fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
write!(f, "{}", self.get())
}
}
impl<T: Modulo> std::fmt::Debug for ModInt<T> {
fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
write!(f, "{}", self.get())
}
}
impl<T: Modulo> Default for ModInt<T> {
fn default() -> Self {
Self::zero()
}
}
impl<T: Modulo> std::str::FromStr for ModInt<T> {
type Err = std::num::ParseIntError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let val = s.parse::<u32>()?;
Ok(ModInt::new(val))
}
}
impl<T: Modulo> From<usize> for ModInt<T> {
fn from(val: usize) -> ModInt<T> {
ModInt::new_unchecked((val % T::modulo() as usize) as u32)
}
}
impl<T: Modulo> From<u64> for ModInt<T> {
fn from(val: u64) -> ModInt<T> {
ModInt::new_unchecked((val % T::modulo() as u64) as u32)
}
}
impl<T: Modulo> From<i64> for ModInt<T> {
fn from(val: i64) -> ModInt<T> {
let m = T::modulo() as i64;
ModInt::new((val % m + m) as u32)
}
}
#[allow(dead_code)]
impl<T> ModInt<T> {
fn build(d: u32) -> Self {
ModInt(d, PhantomData)
}
pub fn zero() -> Self {
Self::build(0)
}
pub fn is_zero(&self) -> bool {
self.0 == 0
}
}
#[allow(dead_code)]
impl<T: Modulo> ModInt<T> {
pub fn new_unchecked(d: u32) -> Self {
Self::build(d)
}
pub fn new(d: u32) -> Self {
Self::new_unchecked(d % T::modulo())
}
pub fn one() -> Self {
Self::new_unchecked(1)
}
pub fn get(&self) -> u32 {
self.0
}
pub fn pow(&self, mut n: u64) -> Self {
let mut t = Self::one();
let mut s = *self;
while n > 0 {
if n & 1 == 1 {
t *= s;
}
s *= s;
n >>= 1;
}
t
}
pub fn inv(&self) -> Self {
assert!(!self.is_zero());
self.pow((T::modulo() - 2) as u64)
}
}
}
// ---------- end ModInt ----------
// ---------- begin Precalc ----------
mod precalc {
use super::modint::*;
#[allow(dead_code)]
pub struct Precalc<T> {
inv: Vec<ModInt<T>>,
fact: Vec<ModInt<T>>,
ifact: Vec<ModInt<T>>,
}
#[allow(dead_code)]
impl<T: Modulo> Precalc<T> {
pub fn new(n: usize) -> Precalc<T> {
let mut inv = vec![ModInt::one(); n + 1];
let mut fact = vec![ModInt::one(); n + 1];
let mut ifact = vec![ModInt::one(); n + 1];
for i in 2..(n + 1) {
fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32);
}
ifact[n] = fact[n].inv();
if n > 0 {
inv[n] = ifact[n] * fact[n - 1];
}
for i in (1..n).rev() {
ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32);
inv[i] = ifact[i] * fact[i - 1];
}
Precalc {
inv: inv,
fact: fact,
ifact: ifact,
}
}
pub fn inv(&self, n: usize) -> ModInt<T> {
assert!(n > 0);
self.inv[n]
}
pub fn fact(&self, n: usize) -> ModInt<T> {
self.fact[n]
}
pub fn ifact(&self, n: usize) -> ModInt<T> {
self.ifact[n]
}
pub fn perm(&self, n: usize, k: usize) -> ModInt<T> {
if k > n {
return ModInt::zero();
}
self.fact[n] * self.ifact[n - k]
}
pub fn comb(&self, n: usize, k: usize) -> ModInt<T> {
if k > n {
return ModInt::zero();
}
self.fact[n] * self.ifact[k] * self.ifact[n - k]
}
}
}
// ---------- end Precalc ----------
use modint::*;
type M = ModInt<StaticMod>;
use std::ops::*;
pub trait Zero: Sized + Add<Output = Self> {
fn zero() -> Self;
}
pub fn zero<T: Zero>() -> T {
T::zero()
}
impl<T: Modulo> Zero for ModInt<T> {
fn zero() -> Self {
Self::zero()
}
}
impl Zero for usize {
fn zero() -> Self {
0
}
}
pub trait ArrayAdd {
type Item;
fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}
impl<T> ArrayAdd for [T]
where
T: Zero + Copy,
{
type Item = T;
fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
let mut c = vec![T::zero(); self.len().max(rhs.len())];
c[..self.len()].copy_from_slice(self);
c.add_assign(rhs);
c
}
}
pub trait ArrayAddAssign {
type Item;
fn add_assign(&mut self, rhs: &[Self::Item]);
}
impl<T> ArrayAddAssign for [T]
where
T: Add<Output = T> + Copy,
{
type Item = T;
fn add_assign(&mut self, rhs: &[Self::Item]) {
assert!(self.len() >= rhs.len());
self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x + *a);
}
}
impl<T> ArrayAddAssign for Vec<T>
where
T: Zero + Add<Output = T> + Copy,
{
type Item = T;
fn add_assign(&mut self, rhs: &[Self::Item]) {
if self.len() < rhs.len() {
self.resize(rhs.len(), T::zero());
}
self.as_mut_slice().add_assign(rhs);
}
}
pub trait ArraySub {
type Item;
fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}
impl<T> ArraySub for [T]
where
T: Zero + Sub<Output = T> + Copy,
{
type Item = T;
fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
let mut c = vec![T::zero(); self.len().max(rhs.len())];
c[..self.len()].copy_from_slice(self);
c.sub_assign(rhs);
c
}
}
pub trait ArraySubAssign {
type Item;
fn sub_assign(&mut self, rhs: &[Self::Item]);
}
impl<T> ArraySubAssign for [T]
where
T: Sub<Output = T> + Copy,
{
type Item = T;
fn sub_assign(&mut self, rhs: &[Self::Item]) {
assert!(self.len() >= rhs.len());
self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x - *a);
}
}
impl<T> ArraySubAssign for Vec<T>
where
T: Zero + Sub<Output = T> + Copy,
{
type Item = T;
fn sub_assign(&mut self, rhs: &[Self::Item]) {
if self.len() < rhs.len() {
self.resize(rhs.len(), T::zero());
}
self.as_mut_slice().sub_assign(rhs);
}
}
pub trait ArrayDot {
type Item;
fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}
impl<T> ArrayDot for [T]
where
T: Mul<Output = T> + Copy,
{
type Item = T;
fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
assert!(self.len() == rhs.len());
self.iter().zip(rhs).map(|p| *p.0 * *p.1).collect()
}
}
pub trait ArrayDotAssign {
type Item;
fn dot_assign(&mut self, rhs: &[Self::Item]);
}
impl<T> ArrayDotAssign for [T]
where
T: MulAssign + Copy,
{
type Item = T;
fn dot_assign(&mut self, rhs: &[Self::Item]) {
assert!(self.len() == rhs.len());
self.iter_mut().zip(rhs).for_each(|(x, a)| *x *= *a);
}
}
pub trait ArrayMul {
type Item;
fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}
impl<T> ArrayMul for [T]
where
T: Zero + Mul<Output = T> + Copy,
{
type Item = T;
fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
if self.is_empty() || rhs.is_empty() {
return vec![];
}
let mut res = vec![zero(); self.len() + rhs.len() - 1];
for (i, a) in self.iter().enumerate() {
for (c, b) in res[i..].iter_mut().zip(rhs) {
*c = *c + *a * *b;
}
}
res
}
}
// --------- end sieve ----------
pub struct Sieve {
size: usize,
factor: Vec<usize>,
}
impl Sieve {
pub fn new(size: usize) -> Sieve {
let mut factor = (0..(size + 1)).collect::<Vec<_>>();
for i in (2..).take_while(|p| p * p <= size) {
if i == factor[i] {
for j in i..(size / i + 1) {
factor[j * i] = i;
}
}
}
Sieve {
size: size,
factor: factor,
}
}
pub fn factor(&self, n: usize) -> Option<usize> {
assert!(n <= self.size);
if n == 1 {
None
} else {
Some(self.factor[n])
}
}
pub fn factorize(&self, mut n: usize, res: &mut Vec<usize>) {
assert!(n <= self.size);
res.clear();
res.push(1);
while let Some(p) = self.factor(n) {
let len = res.len();
while n % p == 0 {
n /= p;
for _ in 0..len {
let v = res[res.len() - len] * p;
res.push(v);
}
}
}
}
}
// --------- end sieve ----------
akakimidori