結果
問題 |
No.3194 Do Optimize Your Solution
|
ユーザー |
![]() |
提出日時 | 2025-06-23 02:55:55 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 29,632 bytes |
コンパイル時間 | 4,545 ms |
コンパイル使用メモリ | 317,068 KB |
実行使用メモリ | 58,448 KB |
最終ジャッジ日時 | 2025-06-27 20:50:34 |
合計ジャッジ時間 | 13,459 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | WA * 1 TLE * 2 -- * 14 |
ソースコード
#line 2 "/Users/noya2/Desktop/Noya2_library/template/template.hpp" using namespace std; #include<bits/stdc++.h> #line 1 "/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp" namespace noya2 { template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &p){ os << p.first << " " << p.second; return os; } template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &p){ is >> p.first >> p.second; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &v){ int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template <typename T> istream &operator>>(istream &is, vector<T> &v){ for (auto &x : v) is >> x; return is; } void in() {} template <typename T, class... U> void in(T &t, U &...u){ cin >> t; in(u...); } void out() { cout << "\n"; } template <typename T, class... U, char sep = ' '> void out(const T &t, const U &...u){ cout << t; if (sizeof...(u)) cout << sep; out(u...); } template<typename T> void out(const vector<vector<T>> &vv){ int s = (int)vv.size(); for (int i = 0; i < s; i++) out(vv[i]); } struct IoSetup { IoSetup(){ cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetup_noya2; } // namespace noya2 #line 1 "/Users/noya2/Desktop/Noya2_library/template/const.hpp" namespace noya2{ const int iinf = 1'000'000'007; const long long linf = 2'000'000'000'000'000'000LL; const long long mod998 = 998244353; const long long mod107 = 1000000007; const long double pi = 3.14159265358979323; const vector<int> dx = {0,1,0,-1,1,1,-1,-1}; const vector<int> dy = {1,0,-1,0,1,-1,-1,1}; const string ALP = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; const string alp = "abcdefghijklmnopqrstuvwxyz"; const string NUM = "0123456789"; void yes(){ cout << "Yes\n"; } void no(){ cout << "No\n"; } void YES(){ cout << "YES\n"; } void NO(){ cout << "NO\n"; } void yn(bool t){ t ? yes() : no(); } void YN(bool t){ t ? YES() : NO(); } } // namespace noya2 #line 2 "/Users/noya2/Desktop/Noya2_library/template/utils.hpp" #line 6 "/Users/noya2/Desktop/Noya2_library/template/utils.hpp" namespace noya2{ unsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){ if (a == 0 || b == 0) return a + b; int n = __builtin_ctzll(a); a >>= n; int m = __builtin_ctzll(b); b >>= m; while (a != b) { int mm = __builtin_ctzll(a - b); bool f = a > b; unsigned long long c = f ? a : b; b = f ? b : a; a = (c - b) >> mm; } return a << std::min(n, m); } template<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(std::abs(a),std::abs(b))); } long long sqrt_fast(long long n) { if (n <= 0) return 0; long long x = sqrt(n); while ((x + 1) * (x + 1) <= n) x++; while (x * x > n) x--; return x; } template<typename T> T floor_div(const T n, const T d) { assert(d != 0); return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0); } template<typename T> T ceil_div(const T n, const T d) { assert(d != 0); return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0); } template<typename T> void uniq(std::vector<T> &v){ std::sort(v.begin(),v.end()); v.erase(unique(v.begin(),v.end()),v.end()); } template <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; } } // namespace noya2 #line 8 "/Users/noya2/Desktop/Noya2_library/template/template.hpp" #define rep(i,n) for (int i = 0; i < (int)(n); i++) #define repp(i,m,n) for (int i = (m); i < (int)(n); i++) #define reb(i,n) for (int i = (int)(n-1); i >= 0; i--) #define all(v) (v).begin(),(v).end() using ll = long long; using ld = long double; using uint = unsigned int; using ull = unsigned long long; using pii = pair<int,int>; using pll = pair<ll,ll>; using pil = pair<int,ll>; using pli = pair<ll,int>; namespace noya2{ /* ~ (. _________ . /) */ } using namespace noya2; #line 2 "c26.cpp" #line 2 "/Users/noya2/Desktop/Noya2_library/tree/centroid_decomposition.hpp" #line 4 "/Users/noya2/Desktop/Noya2_library/tree/centroid_decomposition.hpp" namespace noya2 { std::vector<int> centroid_decomposition(const auto &g){ int n = g.size(); if (n == 0){ return {}; } std::vector<int> sub(n), order; order.reserve(n); auto subtree = [&](auto sfs, int v, int f) -> void { sub[v] = 1; for (int u : g[v]){ if (u == f) continue; sfs(sfs, u, v); sub[v] += sub[u]; } }; subtree(subtree,0,-1); auto fixed_root = [&](auto self, int root, int par, int cur_size) -> void { auto dfs = [&](auto sfs, int v, int f, int sz) -> int { int heavy = 0, child = -1; for (int u : g[v]){ if (u == f) continue; if (heavy < sub[u]){ heavy = sub[u]; child = u; } } if (heavy > sz/2){ int ret = sfs(sfs, child, v, sz); sub[v] -= ret; return ret; } else { order.emplace_back(v); for (int u : g[v]){ if (u == f) continue; self(self, u, v, sub[u]); } int ret = sub[v]; sub[v] = 0; return ret; } }; while (cur_size > 0){ cur_size -= dfs(dfs, root, par, cur_size); } }; fixed_root(fixed_root, 0, -1, n); return order; } std::vector<int> centroid_decomposition_tree(const auto &g){ int n = g.size(); if (n == 0){ return {}; } std::vector<int> sub(n), par_tree(n); auto subtree = [&](auto sfs, int v, int f) -> void { sub[v] = 1; for (int u : g[v]){ if (u == f) continue; sfs(sfs, u, v); sub[v] += sub[u]; } }; subtree(subtree,0,-1); auto fixed_root = [&](auto self, int root, int par, int cur_size, int cpre) -> void { auto dfs = [&](auto sfs, int v, int f, int sz) -> int { int heavy = 0, child = -1; for (int u : g[v]){ if (u == f) continue; if (heavy < sub[u]){ heavy = sub[u]; child = u; } } if (heavy > sz/2){ int ret = sfs(sfs, child, v, sz); sub[v] -= ret; return ret; } else { par_tree[v] = cpre; for (int u : g[v]){ if (u == f) continue; self(self, u, v, sub[u], v); } int ret = sub[v]; cpre = v; sub[v] = 0; return ret; } }; while (cur_size > 0){ cur_size -= dfs(dfs, root, par, cur_size); } }; fixed_root(fixed_root, 0, -1, n, -1); return par_tree; } } // namespace noya2 #line 2 "/Users/noya2/Desktop/Noya2_library/tree/simple_tree.hpp" #line 2 "/Users/noya2/Desktop/Noya2_library/data_structure/csr.hpp" #line 4 "/Users/noya2/Desktop/Noya2_library/data_structure/csr.hpp" #include<ranges> #line 7 "/Users/noya2/Desktop/Noya2_library/data_structure/csr.hpp" namespace noya2::internal { template<class E> struct csr { csr () {} csr (int _n) : n(_n) {} csr (int _n, int m) : n(_n){ start.reserve(m); elist.reserve(m); } // ACL style constructor (do not have to call build) csr (int _n, const std::vector<std::pair<int,E>> &idx_elem) : n(_n), start(_n + 2), elist(idx_elem.size()) { for (auto &[i, e] : idx_elem){ start[i + 2]++; } for (int i = 1; i < n; i++){ start[i + 2] += start[i + 1]; } for (auto &[i, e] : idx_elem){ elist[start[i + 1]++] = e; } prepared = true; } int add(int idx, E elem){ int eid = start.size(); start.emplace_back(idx); elist.emplace_back(elem); return eid; } void build(){ if (prepared) return ; int m = start.size(); std::vector<E> nelist(m); std::vector<int> nstart(n + 2, 0); for (int i = 0; i < m; i++){ nstart[start[i] + 2]++; } for (int i = 1; i < n; i++){ nstart[i + 2] += nstart[i + 1]; } for (int i = 0; i < m; i++){ nelist[nstart[start[i] + 1]++] = elist[i]; } swap(elist,nelist); swap(start,nstart); prepared = true; } const auto operator[](int idx) const { return std::ranges::subrange(elist.begin()+start[idx],elist.begin()+start[idx+1]); } auto operator[](int idx){ return std::ranges::subrange(elist.begin()+start[idx],elist.begin()+start[idx+1]); } const auto operator()(int idx, int l, int r) const { return std::ranges::subrange(elist.begin()+start[idx]+l,elist.begin()+start[idx]+r); } auto operator()(int idx, int l, int r){ return std::ranges::subrange(elist.begin()+start[idx]+l,elist.begin()+start[idx]+r); } size_t size() const { return n; } int n; std::vector<int> start; std::vector<E> elist; bool prepared = false; }; } // namespace noya2::internal #line 5 "/Users/noya2/Desktop/Noya2_library/tree/simple_tree.hpp" namespace noya2 { struct simple_tree { internal::csr<int> g; simple_tree () {} simple_tree (int _n) : g(_n, (_n - 1)*2) { if (_n == 1){ g.build(); } } void add_edge(int u, int v){ g.add(u, v); int id = g.add(v, u); if (id + 1 == (g.n - 1)*2) g.build(); } void input(int indexed = 1){ for (int i = 0; i < g.n - 1; i++){ int u, v; cin >> u >> v; u -= indexed, v -= indexed; add_edge(u, v); } } void input_parents(int indexed = 1){ for (int i = 0; i < g.n - 1; i++){ int v; cin >> v; v -= indexed; add_edge(i + 1, v); } } const auto operator[](int v) const { return g[v]; } auto operator[](int v){ return g[v]; } size_t size() const { return g.size(); } }; } // namespace noya2 #line 2 "/Users/noya2/Desktop/Noya2_library/tree/heavy_light_decomposition.hpp" #line 9 "/Users/noya2/Desktop/Noya2_library/tree/heavy_light_decomposition.hpp" #line 11 "/Users/noya2/Desktop/Noya2_library/tree/heavy_light_decomposition.hpp" namespace noya2 { struct hld_tree { int n, root; bool build_ok = false; std::vector<int> down, nxt, sub, tour; noya2::internal::csr<int> childs; // default constructor (nop) hld_tree () {} // tree with _n node // after construct, call input_edges / input_parents / add_edge _n - 1 times hld_tree (int _n, int _root = 0) : n(_n), root(_root), down(n), nxt(n), sub(n, 1), tour(n) { if (n == 1){ nxt[0] = -1; down[0] = -1; build_from_parents(); } } // par[i] < i, par[0] == -1 hld_tree (const std::vector<int> &par) : n(par.size()), root(0), down(n, -1), nxt(par), sub(n, 1), tour(n){ build_from_parents(); } // par[i] < i, par[0] == -1 hld_tree (std::vector<int> &&par) : n(par.size()), root(0), down(n, -1), sub(n, 1), tour(n) { nxt.swap(par); build_from_parents(); } // distinct unweighted undirected n - 1 edges of tree hld_tree (const std::vector<std::pair<int, int>> &es, int _root = 0) : n(es.size() + 1), root(_root), down(n), nxt(n), sub(n, 1), tour(n) { for (auto &[u, v] : es){ down[u]++; down[v]++; nxt[u] ^= v; nxt[v] ^= u; } build_from_edges(); } // input parents from cin template<int indexed = 1> void input_parents(){ using std::cin; nxt[0] = -1; down[0] = -1; for (int u = 1; u < n; u++){ cin >> nxt[u]; nxt[u] -= indexed; down[u] = -1; } build_from_parents(); } // input n - 1 edges from cin template<int indexed = 1> void input_edges(){ using std::cin; for (int i = 1; i < n; i++){ int u, v; cin >> u >> v; u -= indexed; v -= indexed; down[u]++; down[v]++; nxt[u] ^= v; nxt[v] ^= u; } build_from_edges(); } void add_edge(int u, int v){ down[u]++; down[v]++; nxt[u] ^= v; nxt[v] ^= u; // use tour[0] as counter if (++tour[0] == n - 1){ build_from_edges(); } } size_t size() const { return n; } // top vertex of heavy path which contains v int leader(int v) const { return nxt[v] < 0 ? v : nxt[v]; } // level ancestor // ret is ancestor of v, dist(ret, v) == d // if d > depth(v), return -1 int la(int v, int d) const { while (v != -1){ int u = leader(v); if (down[v] - d >= down[u]){ v = tour[down[v] - d]; break; } d -= down[v] - down[u] + 1; v = (u == root ? -1 : ~nxt[u]); } return v; } // lowest common ancestor of u and v int lca(int u, int v) const { int du = down[u], dv = down[v]; if (du > dv){ std::swap(du, dv); std::swap(u, v); } if (dv < du + sub[u]){ return u; } while (du < dv){ v = ~nxt[leader(v)]; dv = down[v]; } return v; } // distance from u to v int dist(int u, int v) const { int _dist = 0; while (leader(u) != leader(v)){ if (down[u] > down[v]) std::swap(u, v); _dist += down[v] - down[leader(v)] + 1; v = ~nxt[leader(v)]; } _dist += std::abs(down[u] - down[v]); return _dist; } // d times move from to its neighbor (direction of to) // if d > dist(from, to), return -1 int jump(int from, int to, int d) const { int _from = from, _to = to; int dist_from_lca = 0, dist_to_lca = 0; while (leader(_from) != leader(_to)){ if (down[_from] > down[_to]){ dist_from_lca += down[_from] - down[leader(_from)] + 1; _from = ~nxt[leader(_from)]; } else { dist_to_lca += down[_to] - down[leader(_to)] + 1; _to = ~nxt[leader(_to)]; } } if (down[_from] > down[_to]){ dist_from_lca += down[_from] - down[_to]; } else { dist_to_lca += down[_to] - down[_from]; } if (d <= dist_from_lca){ return la(from, d); } d -= dist_from_lca; if (d <= dist_to_lca){ return la(to, dist_to_lca - d); } return -1; } // parent of v (if v is root, return -1) int parent(int v) const { if (v == root) return -1; return (nxt[v] < 0 ? ~nxt[v] : tour[down[v] - 1]); } // visiting time in euler tour // usage : seg.set(index(v), X[v]) int index(int vertex) const { return down[vertex]; } // usage : seg.set(index_edge(e.u, e.v), e.val) int index(int vertex1, int vertex2) const { return std::max(down[vertex1], down[vertex2]); } // subtree size of v int subtree_size(int v) const { return sub[v]; } // prod in subtree v : seg.prod(subtree_l(v), subtree_r(v)) int subtree_l(int v) const { return down[v]; } int subtree_r(int v) const { return down[v] + sub[v]; } // v is in subtree r bool is_in_subtree(int r, int v) const { return subtree_l(r) <= subtree_l(v) && subtree_r(v) <= subtree_r(r); } // distance table from s std::vector<int> dist_table(int s) const { std::vector<int> table(n, -1); table[s] = 0; while (s != root){ table[parent(s)] = table[s] + 1; s = parent(s); } for (int v : tour){ if (table[v] == -1){ table[v] = table[parent(v)] + 1; } } return table; } // dist, v1, v2 std::tuple<int, int, int> diameter() const { std::vector<int> dep = dist_table(root); int v1 = std::ranges::max_element(dep) - dep.begin(); std::vector<int> fromv1 = dist_table(v1); int v2 = std::ranges::max_element(fromv1) - fromv1.begin(); return {fromv1[v2], v1, v2}; } // vertex array {from, ..., to} std::vector<int> path(int from, int to) const { int d = dist(from, to); std::vector<int> _path(d + 1); int front = 0, back = d; while (from != to){ if (down[from] > down[to]){ _path[front++] = from; from = parent(from); } else { _path[back--] = to; to = parent(to); } } _path[front] = from; return _path; } // path decomposition and query (vertex weighted) // if l < r, decsending order tour[l, r) // if l > r, acsending order tour(l, r] template<bool vertex = true> void path_query(int u, int v, auto f) const { while (leader(u) != leader(v)){ if (down[u] < down[v]){ f(down[leader(v)], down[v] + 1); v = ~nxt[leader(v)]; } else { f(down[u] + 1, down[leader(u)]); u = ~nxt[leader(u)]; } } if constexpr (vertex){ if (down[u] < down[v]){ f(down[u], down[v] + 1); } else { f(down[u] + 1, down[v]); } } else { if (down[u] != down[v]){ f(down[u] + 1, down[v] + 1); } } } // {parent, mapping} : cptree i is correspond to tree mapping[i]. parent[i] is parent of i in cptree. // parent[i] < i, parent[0] == -1 std::pair<std::vector<int>, std::vector<int>> compressed_tree(std::vector<int> vs) const { if (vs.empty()){ return {{},{}}; } auto comp = [&](int l, int r){ return down[l] < down[r]; }; std::ranges::sort(vs, comp); int sz = vs.size(); vs.reserve(2*sz); for (int i = 0; i < sz-1; i++){ vs.emplace_back(lca(vs[i], vs[i+1])); } std::sort(vs.begin() + sz, vs.end(), comp); std::ranges::inplace_merge(vs, vs.begin() + sz, comp); auto del = std::ranges::unique(vs); vs.erase(del.begin(), del.end()); sz = vs.size(); std::stack<int> st; std::vector<int> par(sz); par[0] = -1; st.push(0); for (int i = 1; i < sz; i++){ while (!is_in_subtree(vs[st.top()], vs[i])) st.pop(); par[i] = st.top(); st.push(i); } return {par, vs}; } //* CSR // build csr for using operator() // g(v).front() : heady child of v void build_csr(){ childs = noya2::internal::csr<int>(n, n - 1); for (int v = 0; v < n; v++){ if (v == root) continue; if (leader(v) != v){ childs.add(parent(v),v); } } for (int v = 0; v < n; v++){ if (v == root) continue; if (leader(v) == v){ childs.add(parent(v),v); } } childs.build(); } const auto operator()(int v) const { return childs[v]; } auto operator()(int v){ return childs[v]; } //*/ // hld_tree g; // euler tour order : `for (int v : g)` // with range_adaptor : `for (int v : g | std::views::reverse)` // bottom-up DP : `for (int v : g | std::views::drop(1) | std::views::reverse){ update dp[g.parent(v)] by dp[v] }` auto begin() const { return tour.begin(); } auto end() const { return tour.end(); } private: // nxt[v] : parent of v, nxt[0] == -1 void build_from_parents(){ for (int u = n - 1; u >= 1; u--){ int v = nxt[u]; sub[v] += sub[u]; down[v] = std::max(down[v], sub[u]); } for (int u = n - 1; u >= 1; u--){ int v = nxt[u]; if (down[v] == sub[u]){ sub[u] = ~sub[u]; down[v] = ~down[v]; } } sub[0] = ~down[0] + 1; down[0] = 0; for (int u = 1; u < n; u++){ int v = nxt[u]; int nsub = ~down[u] + 1; if (sub[u] < 0){ down[u] = down[v] + 1; nxt[u] = (nxt[v] < 0 ? v : nxt[v]); } else { down[u] = down[v] + sub[v]; sub[v] += sub[u]; nxt[u] = ~v; } sub[u] = nsub; } for (int u = 0; u < n; u++){ tour[down[u]] = u; } build_ok = true; } // down[v] : degree of v // nxt[v] : xor prod of neighbor of v void build_from_edges(){ // use tour as queue int back = 0; for (int u = 0; u < n; u++){ if (u != root && down[u] == 1){ tour[back++] = u; } } for (int front = 0; front < n - 1; front++){ int u = tour[front]; down[u] = -1; int v = nxt[u]; // parent of v nxt[v] ^= u; if (--down[v] == 1 && v != root){ tour[back++] = v; } } // check : now, tour is reverse of topological order tour.pop_back(); // check : now, down[*] <= 1 for (int u : tour){ int v = nxt[u]; // subtree size (initialized (1,1,...,1)) sub[v] += sub[u]; // heaviest subtree of its child down[v] = std::max(down[v], sub[u]); } for (int u : tour){ int v = nxt[u]; // whether u is not the top of heavy path if (down[v] == sub[u]){ sub[u] = ~sub[u]; down[v] = ~down[v]; } } // after appearing v as u (or v == root), // down[v] is the visiting time of euler tour // nxt[v] is the lowest vertex of heavy path which contains v // (if v itself, nxt[v] is ~(parent of v)) // sub[v] + down[v] is the light child's starting time of euler tour // note : heavy child's visiting time of euler tour is (the time of its parent) + 1 sub[root] = ~down[root] + 1; down[root] = 0; nxt[root] = -1; for (int u : tour | std::views::reverse){ int v = nxt[u]; int nsub = ~down[u] + 1; // heavy child if (sub[u] < 0){ down[u] = down[v] + 1; nxt[u] = (nxt[v] < 0 ? v : nxt[v]); } // light child else { down[u] = down[v] + sub[v]; sub[v] += sub[u]; nxt[u] = ~v; } sub[u] = nsub; } // tour is inverse permutation of down tour.push_back(root); for (int u = 0; u < n; u++){ tour[down[u]] = u; } build_ok = true; } }; } // namespace noya2 #line 6 "c26.cpp" template <class T> struct fenwick_tree { public: fenwick_tree() : _n(0) {} explicit fenwick_tree(int n_) : _n(n_), data(n_) {} void add(int p, T x) { assert(0 <= p && p < _n); p++; while (p <= _n) { data[p - 1] += x; p += p & -p; } } T sum(int l, int r) { assert(0 <= l && l <= r && r <= _n); return sum(r) - sum(l); } int _n; vector<T> data; T sum(int r) { T s = 0; while (r > 0) { s += data[r - 1]; r -= r & -r; } return s; } }; ll naive(simple_tree sa, hld_tree b){ int n = b.size(); hld_tree a(n); rep(v,n) for (int u : sa[v]){ if (u < v){ a.add_edge(u,v); } } ll ans = 0; rep(v,n){ auto da = a.dist_table(v); auto db = b.dist_table(v); rep(u,n){ ans += (ll)da[u] * db[u]; } } return ans; } struct range_add_fenwick_tree { fenwick_tree<ll> c0, c1; range_add_fenwick_tree (int n) : c0(n+1), c1(n+1) {} void prefix_apply(int r, ll x){ c0.add(r, r*x); c1.add(r, -x); } void apply(int l, int r, ll x){ prefix_apply(r, x); prefix_apply(l, -x); } ll prefix_prod(int r){ return c0.sum(r) + c1.sum(r) * r; } ll prod(int l, int r){ return prefix_prod(r) - prefix_prod(l); }; }; struct fast_lca_dist { std::vector<int> depth; }; ll fast(simple_tree a, hld_tree b){ int n = a.size(); vector<bool> done(n,false); range_add_fenwick_tree depfen(n), distfen(n); auto dep = b.dist_table(0); // A(u, v) * B(u, v) == (dist[u] + dist[v]) * (dep[u] + dep[v] - 2 * dep[lca(u, v)]) ll ans = 0; for (int ctr : centroid_decomposition(a)){ done[ctr] = true; // numof u, dist[u], dep[u], dist[u]*dep[u] ll cnt = 0, distsum = 0, depsum = 0, prdsum = 0; auto dfs = [&](auto sfs, int v, int f, int dist) -> void { // dist[u] * dep[u] ans += prdsum; // dist[u] * dep[v] ans += distsum * dep[v]; // dist[v] * dep[u] ans += dist * depsum; // dist[v] * dep[v] ans += dist * dep[v] * cnt; // dist[u] * -2dep[lca(u,v)] // dist[v] * -2dep[lca(u,v)] b.path_query<false>(0, v, [&](int l, int r){ if (l > r) swap(l, r); // return ; ans += distfen.prod(l, r) + depfen.prod(l, r) * dist; }); for (int u : a[v]){ if (done[u]) continue; if (u == f) continue; sfs(sfs,u,v,dist+1); } }; auto efs = [&](auto sfs, int v, int f, int dist) -> void { // dist[u] * dep[u] prdsum += (ll)dist * dep[v]; // dist[u] * dep[v] distsum += dist; // dist[v] * dep[u] depsum += dep[v]; // dist[v] * dep[v] cnt += 1; // dist[u] * -2dep[lca(u,v)] // dist[v] * -2dep[lca(u,v)] b.path_query<false>(0, v, [&](int l, int r){ if (l > r) swap(l, r); // return ; distfen.apply(l, r, -2 * dist); depfen.apply(l, r, -2); }); for (int u : a[v]){ if (done[u]) continue; if (u == f) continue; sfs(sfs,u,v,dist+1); } }; auto ffs = [&](auto sfs, int v, int f, int dist) -> void { // cancel of // dist[u] * -2dep[lca(u,v)] // dist[v] * -2dep[lca(u,v)] b.path_query<false>(0, v, [&](int l, int r){ if (l > r) swap(l, r); // return ; distfen.apply(l, r, 2 * dist); depfen.apply(l, r, 2); }); for (int u : a[v]){ if (done[u]) continue; if (u == f) continue; sfs(sfs,u,v,dist+1); } }; // v : ctr { // dist[u] * dep[u] prdsum += 0; // dist[u] * dep[v] distsum += 0; // dist[v] * dep[u] depsum += dep[ctr]; // dist[v] * dep[v] cnt += 1; // dist[u] * -2dep[lca(u,v)] // dist[v] * -2dep[lca(u,v)] b.path_query<false>(0, ctr, [&](int l, int r){ if (l > r) swap(l, r); // return ; depfen.apply(l, r, -2); }); } for (int v : a[ctr]){ if (done[v]) continue; dfs(dfs,v,ctr,1); efs(efs,v,ctr,1); } for (int v : a[ctr]){ if (done[v]) continue; ffs(ffs,v,ctr,1); } { // cancel of // dist[u] * -2dep[lca(u,v)] // dist[v] * -2dep[lca(u,v)] b.path_query<false>(0, ctr, [&](int l, int r){ if (l > r) swap(l, r); // return ; depfen.apply(l, r, 2); }); } } return ans * 2; } void solve(){ int n; in(n); simple_tree a(n); hld_tree b(n); a.input(); b.input_edges(); ll ans = fast(a,b); out(ans); return ; ll nans = naive(a,b); out(ans,nans); cout << flush; assert(ans == nans); } int main(){ int t = 1; //in(t); while (t--) { solve(); } }