結果
| 問題 |
No.3194 Do Optimize Your Solution
|
| コンテスト | |
| ユーザー |
noya2
|
| 提出日時 | 2025-06-23 02:57:53 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 29,124 bytes |
| コンパイル時間 | 4,321 ms |
| コンパイル使用メモリ | 317,120 KB |
| 実行使用メモリ | 58,452 KB |
| 最終ジャッジ日時 | 2025-06-27 20:50:18 |
| 合計ジャッジ時間 | 14,854 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 1 TLE * 2 -- * 14 |
ソースコード
#line 2 "/Users/noya2/Desktop/Noya2_library/template/template.hpp"
using namespace std;
#include<bits/stdc++.h>
#line 1 "/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp"
namespace noya2 {
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p){
os << p.first << " " << p.second;
return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p){
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v){
int s = (int)v.size();
for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v){
for (auto &x : v) is >> x;
return is;
}
void in() {}
template <typename T, class... U>
void in(T &t, U &...u){
cin >> t;
in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u){
cout << t;
if (sizeof...(u)) cout << sep;
out(u...);
}
template<typename T>
void out(const vector<vector<T>> &vv){
int s = (int)vv.size();
for (int i = 0; i < s; i++) out(vv[i]);
}
struct IoSetup {
IoSetup(){
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
cerr << fixed << setprecision(7);
}
} iosetup_noya2;
} // namespace noya2
#line 1 "/Users/noya2/Desktop/Noya2_library/template/const.hpp"
namespace noya2{
const int iinf = 1'000'000'007;
const long long linf = 2'000'000'000'000'000'000LL;
const long long mod998 = 998244353;
const long long mod107 = 1000000007;
const long double pi = 3.14159265358979323;
const vector<int> dx = {0,1,0,-1,1,1,-1,-1};
const vector<int> dy = {1,0,-1,0,1,-1,-1,1};
const string ALP = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
const string alp = "abcdefghijklmnopqrstuvwxyz";
const string NUM = "0123456789";
void yes(){ cout << "Yes\n"; }
void no(){ cout << "No\n"; }
void YES(){ cout << "YES\n"; }
void NO(){ cout << "NO\n"; }
void yn(bool t){ t ? yes() : no(); }
void YN(bool t){ t ? YES() : NO(); }
} // namespace noya2
#line 2 "/Users/noya2/Desktop/Noya2_library/template/utils.hpp"
#line 6 "/Users/noya2/Desktop/Noya2_library/template/utils.hpp"
namespace noya2{
unsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){
if (a == 0 || b == 0) return a + b;
int n = __builtin_ctzll(a); a >>= n;
int m = __builtin_ctzll(b); b >>= m;
while (a != b) {
int mm = __builtin_ctzll(a - b);
bool f = a > b;
unsigned long long c = f ? a : b;
b = f ? b : a;
a = (c - b) >> mm;
}
return a << std::min(n, m);
}
template<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(std::abs(a),std::abs(b))); }
long long sqrt_fast(long long n) {
if (n <= 0) return 0;
long long x = sqrt(n);
while ((x + 1) * (x + 1) <= n) x++;
while (x * x > n) x--;
return x;
}
template<typename T> T floor_div(const T n, const T d) {
assert(d != 0);
return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0);
}
template<typename T> T ceil_div(const T n, const T d) {
assert(d != 0);
return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0);
}
template<typename T> void uniq(std::vector<T> &v){
std::sort(v.begin(),v.end());
v.erase(unique(v.begin(),v.end()),v.end());
}
template <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; }
template <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; }
template<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; }
} // namespace noya2
#line 8 "/Users/noya2/Desktop/Noya2_library/template/template.hpp"
#define rep(i,n) for (int i = 0; i < (int)(n); i++)
#define repp(i,m,n) for (int i = (m); i < (int)(n); i++)
#define reb(i,n) for (int i = (int)(n-1); i >= 0; i--)
#define all(v) (v).begin(),(v).end()
using ll = long long;
using ld = long double;
using uint = unsigned int;
using ull = unsigned long long;
using pii = pair<int,int>;
using pll = pair<ll,ll>;
using pil = pair<int,ll>;
using pli = pair<ll,int>;
namespace noya2{
/* ~ (. _________ . /) */
}
using namespace noya2;
#line 2 "c26.cpp"
#line 2 "/Users/noya2/Desktop/Noya2_library/tree/centroid_decomposition.hpp"
#line 4 "/Users/noya2/Desktop/Noya2_library/tree/centroid_decomposition.hpp"
namespace noya2 {
std::vector<int> centroid_decomposition(const auto &g){
int n = g.size();
if (n == 0){
return {};
}
std::vector<int> sub(n), order;
order.reserve(n);
auto subtree = [&](auto sfs, int v, int f) -> void {
sub[v] = 1;
for (int u : g[v]){
if (u == f) continue;
sfs(sfs, u, v);
sub[v] += sub[u];
}
};
subtree(subtree,0,-1);
auto fixed_root = [&](auto self, int root, int par, int cur_size) -> void {
auto dfs = [&](auto sfs, int v, int f, int sz) -> int {
int heavy = 0, child = -1;
for (int u : g[v]){
if (u == f) continue;
if (heavy < sub[u]){
heavy = sub[u];
child = u;
}
}
if (heavy > sz/2){
int ret = sfs(sfs, child, v, sz);
sub[v] -= ret;
return ret;
}
else {
order.emplace_back(v);
for (int u : g[v]){
if (u == f) continue;
self(self, u, v, sub[u]);
}
int ret = sub[v];
sub[v] = 0;
return ret;
}
};
while (cur_size > 0){
cur_size -= dfs(dfs, root, par, cur_size);
}
};
fixed_root(fixed_root, 0, -1, n);
return order;
}
std::vector<int> centroid_decomposition_tree(const auto &g){
int n = g.size();
if (n == 0){
return {};
}
std::vector<int> sub(n), par_tree(n);
auto subtree = [&](auto sfs, int v, int f) -> void {
sub[v] = 1;
for (int u : g[v]){
if (u == f) continue;
sfs(sfs, u, v);
sub[v] += sub[u];
}
};
subtree(subtree,0,-1);
auto fixed_root = [&](auto self, int root, int par, int cur_size, int cpre) -> void {
auto dfs = [&](auto sfs, int v, int f, int sz) -> int {
int heavy = 0, child = -1;
for (int u : g[v]){
if (u == f) continue;
if (heavy < sub[u]){
heavy = sub[u];
child = u;
}
}
if (heavy > sz/2){
int ret = sfs(sfs, child, v, sz);
sub[v] -= ret;
return ret;
}
else {
par_tree[v] = cpre;
for (int u : g[v]){
if (u == f) continue;
self(self, u, v, sub[u], v);
}
int ret = sub[v];
cpre = v;
sub[v] = 0;
return ret;
}
};
while (cur_size > 0){
cur_size -= dfs(dfs, root, par, cur_size);
}
};
fixed_root(fixed_root, 0, -1, n, -1);
return par_tree;
}
} // namespace noya2
#line 2 "/Users/noya2/Desktop/Noya2_library/tree/simple_tree.hpp"
#line 2 "/Users/noya2/Desktop/Noya2_library/data_structure/csr.hpp"
#line 4 "/Users/noya2/Desktop/Noya2_library/data_structure/csr.hpp"
#include<ranges>
#line 7 "/Users/noya2/Desktop/Noya2_library/data_structure/csr.hpp"
namespace noya2::internal {
template<class E>
struct csr {
csr () {}
csr (int _n) : n(_n) {}
csr (int _n, int m) : n(_n){
start.reserve(m);
elist.reserve(m);
}
// ACL style constructor (do not have to call build)
csr (int _n, const std::vector<std::pair<int,E>> &idx_elem) : n(_n), start(_n + 2), elist(idx_elem.size()) {
for (auto &[i, e] : idx_elem){
start[i + 2]++;
}
for (int i = 1; i < n; i++){
start[i + 2] += start[i + 1];
}
for (auto &[i, e] : idx_elem){
elist[start[i + 1]++] = e;
}
prepared = true;
}
int add(int idx, E elem){
int eid = start.size();
start.emplace_back(idx);
elist.emplace_back(elem);
return eid;
}
void build(){
if (prepared) return ;
int m = start.size();
std::vector<E> nelist(m);
std::vector<int> nstart(n + 2, 0);
for (int i = 0; i < m; i++){
nstart[start[i] + 2]++;
}
for (int i = 1; i < n; i++){
nstart[i + 2] += nstart[i + 1];
}
for (int i = 0; i < m; i++){
nelist[nstart[start[i] + 1]++] = elist[i];
}
swap(elist,nelist);
swap(start,nstart);
prepared = true;
}
const auto operator[](int idx) const {
return std::ranges::subrange(elist.begin()+start[idx],elist.begin()+start[idx+1]);
}
auto operator[](int idx){
return std::ranges::subrange(elist.begin()+start[idx],elist.begin()+start[idx+1]);
}
const auto operator()(int idx, int l, int r) const {
return std::ranges::subrange(elist.begin()+start[idx]+l,elist.begin()+start[idx]+r);
}
auto operator()(int idx, int l, int r){
return std::ranges::subrange(elist.begin()+start[idx]+l,elist.begin()+start[idx]+r);
}
size_t size() const {
return n;
}
int n;
std::vector<int> start;
std::vector<E> elist;
bool prepared = false;
};
} // namespace noya2::internal
#line 5 "/Users/noya2/Desktop/Noya2_library/tree/simple_tree.hpp"
namespace noya2 {
struct simple_tree {
internal::csr<int> g;
simple_tree () {}
simple_tree (int _n) : g(_n, (_n - 1)*2) {
if (_n == 1){
g.build();
}
}
void add_edge(int u, int v){
g.add(u, v);
int id = g.add(v, u);
if (id + 1 == (g.n - 1)*2) g.build();
}
void input(int indexed = 1){
for (int i = 0; i < g.n - 1; i++){
int u, v; cin >> u >> v;
u -= indexed, v -= indexed;
add_edge(u, v);
}
}
void input_parents(int indexed = 1){
for (int i = 0; i < g.n - 1; i++){
int v; cin >> v;
v -= indexed;
add_edge(i + 1, v);
}
}
const auto operator[](int v) const {
return g[v];
}
auto operator[](int v){
return g[v];
}
size_t size() const {
return g.size();
}
};
} // namespace noya2
#line 2 "/Users/noya2/Desktop/Noya2_library/tree/heavy_light_decomposition.hpp"
#line 9 "/Users/noya2/Desktop/Noya2_library/tree/heavy_light_decomposition.hpp"
#line 11 "/Users/noya2/Desktop/Noya2_library/tree/heavy_light_decomposition.hpp"
namespace noya2 {
struct hld_tree {
int n, root;
bool build_ok = false;
std::vector<int> down, nxt, sub, tour;
noya2::internal::csr<int> childs;
// default constructor (nop)
hld_tree () {}
// tree with _n node
// after construct, call input_edges / input_parents / add_edge _n - 1 times
hld_tree (int _n, int _root = 0) : n(_n), root(_root), down(n), nxt(n), sub(n, 1), tour(n) {
if (n == 1){
nxt[0] = -1;
down[0] = -1;
build_from_parents();
}
}
// par[i] < i, par[0] == -1
hld_tree (const std::vector<int> &par) : n(par.size()), root(0), down(n, -1), nxt(par), sub(n, 1), tour(n){
build_from_parents();
}
// par[i] < i, par[0] == -1
hld_tree (std::vector<int> &&par) : n(par.size()), root(0), down(n, -1), sub(n, 1), tour(n) {
nxt.swap(par);
build_from_parents();
}
// distinct unweighted undirected n - 1 edges of tree
hld_tree (const std::vector<std::pair<int, int>> &es, int _root = 0) : n(es.size() + 1), root(_root), down(n), nxt(n), sub(n, 1), tour(n) {
for (auto &[u, v] : es){
down[u]++;
down[v]++;
nxt[u] ^= v;
nxt[v] ^= u;
}
build_from_edges();
}
// input parents from cin
template<int indexed = 1>
void input_parents(){
using std::cin;
nxt[0] = -1;
down[0] = -1;
for (int u = 1; u < n; u++){
cin >> nxt[u];
nxt[u] -= indexed;
down[u] = -1;
}
build_from_parents();
}
// input n - 1 edges from cin
template<int indexed = 1>
void input_edges(){
using std::cin;
for (int i = 1; i < n; i++){
int u, v; cin >> u >> v;
u -= indexed;
v -= indexed;
down[u]++;
down[v]++;
nxt[u] ^= v;
nxt[v] ^= u;
}
build_from_edges();
}
void add_edge(int u, int v){
down[u]++;
down[v]++;
nxt[u] ^= v;
nxt[v] ^= u;
// use tour[0] as counter
if (++tour[0] == n - 1){
build_from_edges();
}
}
size_t size() const {
return n;
}
// top vertex of heavy path which contains v
int leader(int v) const {
return nxt[v] < 0 ? v : nxt[v];
}
// level ancestor
// ret is ancestor of v, dist(ret, v) == d
// if d > depth(v), return -1
int la(int v, int d) const {
while (v != -1){
int u = leader(v);
if (down[v] - d >= down[u]){
v = tour[down[v] - d];
break;
}
d -= down[v] - down[u] + 1;
v = (u == root ? -1 : ~nxt[u]);
}
return v;
}
// lowest common ancestor of u and v
int lca(int u, int v) const {
int du = down[u], dv = down[v];
if (du > dv){
std::swap(du, dv);
std::swap(u, v);
}
if (dv < du + sub[u]){
return u;
}
while (du < dv){
v = ~nxt[leader(v)];
dv = down[v];
}
return v;
}
// distance from u to v
int dist(int u, int v) const {
int _dist = 0;
while (leader(u) != leader(v)){
if (down[u] > down[v]) std::swap(u, v);
_dist += down[v] - down[leader(v)] + 1;
v = ~nxt[leader(v)];
}
_dist += std::abs(down[u] - down[v]);
return _dist;
}
// d times move from to its neighbor (direction of to)
// if d > dist(from, to), return -1
int jump(int from, int to, int d) const {
int _from = from, _to = to;
int dist_from_lca = 0, dist_to_lca = 0;
while (leader(_from) != leader(_to)){
if (down[_from] > down[_to]){
dist_from_lca += down[_from] - down[leader(_from)] + 1;
_from = ~nxt[leader(_from)];
}
else {
dist_to_lca += down[_to] - down[leader(_to)] + 1;
_to = ~nxt[leader(_to)];
}
}
if (down[_from] > down[_to]){
dist_from_lca += down[_from] - down[_to];
}
else {
dist_to_lca += down[_to] - down[_from];
}
if (d <= dist_from_lca){
return la(from, d);
}
d -= dist_from_lca;
if (d <= dist_to_lca){
return la(to, dist_to_lca - d);
}
return -1;
}
// parent of v (if v is root, return -1)
int parent(int v) const {
if (v == root) return -1;
return (nxt[v] < 0 ? ~nxt[v] : tour[down[v] - 1]);
}
// visiting time in euler tour
// usage : seg.set(index(v), X[v])
int index(int vertex) const {
return down[vertex];
}
// usage : seg.set(index_edge(e.u, e.v), e.val)
int index(int vertex1, int vertex2) const {
return std::max(down[vertex1], down[vertex2]);
}
// subtree size of v
int subtree_size(int v) const {
return sub[v];
}
// prod in subtree v : seg.prod(subtree_l(v), subtree_r(v))
int subtree_l(int v) const {
return down[v];
}
int subtree_r(int v) const {
return down[v] + sub[v];
}
// v is in subtree r
bool is_in_subtree(int r, int v) const {
return subtree_l(r) <= subtree_l(v) && subtree_r(v) <= subtree_r(r);
}
// distance table from s
std::vector<int> dist_table(int s) const {
std::vector<int> table(n, -1);
table[s] = 0;
while (s != root){
table[parent(s)] = table[s] + 1;
s = parent(s);
}
for (int v : tour){
if (table[v] == -1){
table[v] = table[parent(v)] + 1;
}
}
return table;
}
// dist, v1, v2
std::tuple<int, int, int> diameter() const {
std::vector<int> dep = dist_table(root);
int v1 = std::ranges::max_element(dep) - dep.begin();
std::vector<int> fromv1 = dist_table(v1);
int v2 = std::ranges::max_element(fromv1) - fromv1.begin();
return {fromv1[v2], v1, v2};
}
// vertex array {from, ..., to}
std::vector<int> path(int from, int to) const {
int d = dist(from, to);
std::vector<int> _path(d + 1);
int front = 0, back = d;
while (from != to){
if (down[from] > down[to]){
_path[front++] = from;
from = parent(from);
}
else {
_path[back--] = to;
to = parent(to);
}
}
_path[front] = from;
return _path;
}
// path decomposition and query (vertex weighted)
// if l < r, decsending order tour[l, r)
// if l > r, acsending order tour(l, r]
template<bool vertex = true>
void path_query(int u, int v, auto f) const {
while (leader(u) != leader(v)){
if (down[u] < down[v]){
f(down[leader(v)], down[v] + 1);
v = ~nxt[leader(v)];
}
else {
f(down[u] + 1, down[leader(u)]);
u = ~nxt[leader(u)];
}
}
if constexpr (vertex){
if (down[u] < down[v]){
f(down[u], down[v] + 1);
}
else {
f(down[u] + 1, down[v]);
}
}
else {
if (down[u] != down[v]){
f(down[u] + 1, down[v] + 1);
}
}
}
// {parent, mapping} : cptree i is correspond to tree mapping[i]. parent[i] is parent of i in cptree.
// parent[i] < i, parent[0] == -1
std::pair<std::vector<int>, std::vector<int>> compressed_tree(std::vector<int> vs) const {
if (vs.empty()){
return {{},{}};
}
auto comp = [&](int l, int r){
return down[l] < down[r];
};
std::ranges::sort(vs, comp);
int sz = vs.size(); vs.reserve(2*sz);
for (int i = 0; i < sz-1; i++){
vs.emplace_back(lca(vs[i], vs[i+1]));
}
std::sort(vs.begin() + sz, vs.end(), comp);
std::ranges::inplace_merge(vs, vs.begin() + sz, comp);
auto del = std::ranges::unique(vs);
vs.erase(del.begin(), del.end());
sz = vs.size();
std::stack<int> st;
std::vector<int> par(sz);
par[0] = -1;
st.push(0);
for (int i = 1; i < sz; i++){
while (!is_in_subtree(vs[st.top()], vs[i])) st.pop();
par[i] = st.top();
st.push(i);
}
return {par, vs};
}
//* CSR
// build csr for using operator()
// g(v).front() : heady child of v
void build_csr(){
childs = noya2::internal::csr<int>(n, n - 1);
for (int v = 0; v < n; v++){
if (v == root) continue;
if (leader(v) != v){
childs.add(parent(v),v);
}
}
for (int v = 0; v < n; v++){
if (v == root) continue;
if (leader(v) == v){
childs.add(parent(v),v);
}
}
childs.build();
}
const auto operator()(int v) const {
return childs[v];
}
auto operator()(int v){
return childs[v];
}
//*/
// hld_tree g;
// euler tour order : `for (int v : g)`
// with range_adaptor : `for (int v : g | std::views::reverse)`
// bottom-up DP : `for (int v : g | std::views::drop(1) | std::views::reverse){ update dp[g.parent(v)] by dp[v] }`
auto begin() const {
return tour.begin();
}
auto end() const {
return tour.end();
}
private:
// nxt[v] : parent of v, nxt[0] == -1
void build_from_parents(){
for (int u = n - 1; u >= 1; u--){
int v = nxt[u];
sub[v] += sub[u];
down[v] = std::max(down[v], sub[u]);
}
for (int u = n - 1; u >= 1; u--){
int v = nxt[u];
if (down[v] == sub[u]){
sub[u] = ~sub[u];
down[v] = ~down[v];
}
}
sub[0] = ~down[0] + 1;
down[0] = 0;
for (int u = 1; u < n; u++){
int v = nxt[u];
int nsub = ~down[u] + 1;
if (sub[u] < 0){
down[u] = down[v] + 1;
nxt[u] = (nxt[v] < 0 ? v : nxt[v]);
}
else {
down[u] = down[v] + sub[v];
sub[v] += sub[u];
nxt[u] = ~v;
}
sub[u] = nsub;
}
for (int u = 0; u < n; u++){
tour[down[u]] = u;
}
build_ok = true;
}
// down[v] : degree of v
// nxt[v] : xor prod of neighbor of v
void build_from_edges(){
// use tour as queue
int back = 0;
for (int u = 0; u < n; u++){
if (u != root && down[u] == 1){
tour[back++] = u;
}
}
for (int front = 0; front < n - 1; front++){
int u = tour[front];
down[u] = -1;
int v = nxt[u]; // parent of v
nxt[v] ^= u;
if (--down[v] == 1 && v != root){
tour[back++] = v;
}
}
// check : now, tour is reverse of topological order
tour.pop_back();
// check : now, down[*] <= 1
for (int u : tour){
int v = nxt[u];
// subtree size (initialized (1,1,...,1))
sub[v] += sub[u];
// heaviest subtree of its child
down[v] = std::max(down[v], sub[u]);
}
for (int u : tour){
int v = nxt[u];
// whether u is not the top of heavy path
if (down[v] == sub[u]){
sub[u] = ~sub[u];
down[v] = ~down[v];
}
}
// after appearing v as u (or v == root),
// down[v] is the visiting time of euler tour
// nxt[v] is the lowest vertex of heavy path which contains v
// (if v itself, nxt[v] is ~(parent of v))
// sub[v] + down[v] is the light child's starting time of euler tour
// note : heavy child's visiting time of euler tour is (the time of its parent) + 1
sub[root] = ~down[root] + 1;
down[root] = 0;
nxt[root] = -1;
for (int u : tour | std::views::reverse){
int v = nxt[u];
int nsub = ~down[u] + 1;
// heavy child
if (sub[u] < 0){
down[u] = down[v] + 1;
nxt[u] = (nxt[v] < 0 ? v : nxt[v]);
}
// light child
else {
down[u] = down[v] + sub[v];
sub[v] += sub[u];
nxt[u] = ~v;
}
sub[u] = nsub;
}
// tour is inverse permutation of down
tour.push_back(root);
for (int u = 0; u < n; u++){
tour[down[u]] = u;
}
build_ok = true;
}
};
} // namespace noya2
#line 6 "c26.cpp"
template <class T> struct fenwick_tree {
public:
fenwick_tree() : _n(0) {}
explicit fenwick_tree(int n_) : _n(n_), data(n_) {}
void add(int p, T x) {
assert(0 <= p && p < _n);
p++;
while (p <= _n) {
data[p - 1] += x;
p += p & -p;
}
}
T sum(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
return sum(r) - sum(l);
}
int _n;
vector<T> data;
T sum(int r) {
T s = 0;
while (r > 0) {
s += data[r - 1];
r -= r & -r;
}
return s;
}
};
struct range_add_fenwick_tree {
fenwick_tree<ull> c0, c1;
range_add_fenwick_tree (int n) : c0(n+1), c1(n+1) {}
void prefix_apply(int r, ull x){
c0.add(r, r*x);
c1.add(r, -x);
}
void apply(int l, int r, ull x){
prefix_apply(r, x);
prefix_apply(l, -x);
}
ull prefix_prod(int r){
return c0.sum(r) + c1.sum(r) * r;
}
ull prod(int l, int r){
return prefix_prod(r) - prefix_prod(l);
};
};
ull fast(simple_tree a, hld_tree b){
int n = a.size();
vector<bool> done(n,false);
range_add_fenwick_tree depfen(n), distfen(n);
auto dep = b.dist_table(0);
// A(u, v) * B(u, v) == (dist[u] + dist[v]) * (dep[u] + dep[v] - 2 * dep[lca(u, v)])
ull ans = 0;
for (int ctr : centroid_decomposition(a)){
done[ctr] = true;
// numof u, dist[u], dep[u], dist[u]*dep[u]
ull cnt = 0, distsum = 0, depsum = 0, prdsum = 0;
auto dfs = [&](auto sfs, int v, int f, int dist) -> void {
// dist[u] * dep[u]
ans += prdsum;
// dist[u] * dep[v]
ans += distsum * dep[v];
// dist[v] * dep[u]
ans += dist * depsum;
// dist[v] * dep[v]
ans += (ull)dist * dep[v] * cnt;
// dist[u] * -2dep[lca(u,v)]
// dist[v] * -2dep[lca(u,v)]
b.path_query<false>(0, v, [&](int l, int r){
if (l > r) swap(l, r);
// return ;
ans += distfen.prod(l, r) + depfen.prod(l, r) * dist;
});
for (int u : a[v]){
if (done[u]) continue;
if (u == f) continue;
sfs(sfs,u,v,dist+1);
}
};
auto efs = [&](auto sfs, int v, int f, int dist) -> void {
// dist[u] * dep[u]
prdsum += (ull)dist * dep[v];
// dist[u] * dep[v]
distsum += dist;
// dist[v] * dep[u]
depsum += dep[v];
// dist[v] * dep[v]
cnt += 1;
// dist[u] * -2dep[lca(u,v)]
// dist[v] * -2dep[lca(u,v)]
b.path_query<false>(0, v, [&](int l, int r){
if (l > r) swap(l, r);
// return ;
distfen.apply(l, r, -2 * dist);
depfen.apply(l, r, -2);
});
for (int u : a[v]){
if (done[u]) continue;
if (u == f) continue;
sfs(sfs,u,v,dist+1);
}
};
auto ffs = [&](auto sfs, int v, int f, int dist) -> void {
// cancel of
// dist[u] * -2dep[lca(u,v)]
// dist[v] * -2dep[lca(u,v)]
b.path_query<false>(0, v, [&](int l, int r){
if (l > r) swap(l, r);
// return ;
distfen.apply(l, r, 2 * dist);
depfen.apply(l, r, 2);
});
for (int u : a[v]){
if (done[u]) continue;
if (u == f) continue;
sfs(sfs,u,v,dist+1);
}
};
// v : ctr
{
// dist[u] * dep[u]
prdsum += 0;
// dist[u] * dep[v]
distsum += 0;
// dist[v] * dep[u]
depsum += dep[ctr];
// dist[v] * dep[v]
cnt += 1;
// dist[u] * -2dep[lca(u,v)]
// dist[v] * -2dep[lca(u,v)]
b.path_query<false>(0, ctr, [&](int l, int r){
if (l > r) swap(l, r);
// return ;
depfen.apply(l, r, -2);
});
}
for (int v : a[ctr]){
if (done[v]) continue;
dfs(dfs,v,ctr,1);
efs(efs,v,ctr,1);
}
for (int v : a[ctr]){
if (done[v]) continue;
ffs(ffs,v,ctr,1);
}
{
// cancel of
// dist[u] * -2dep[lca(u,v)]
// dist[v] * -2dep[lca(u,v)]
b.path_query<false>(0, ctr, [&](int l, int r){
if (l > r) swap(l, r);
// return ;
depfen.apply(l, r, 2);
});
}
}
return ans * 2;
}
void solve(){
int n; in(n);
simple_tree a(n);
hld_tree b(n);
a.input();
b.input_edges();
ull ans = fast(a,b);
out(ans);
}
int main(){
int t = 1; //in(t);
while (t--) { solve(); }
}
noya2