結果
問題 |
No.3194 Do Optimize Your Solution
|
ユーザー |
![]() |
提出日時 | 2025-06-23 23:02:52 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
TLE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 12,380 bytes |
コンパイル時間 | 3,884 ms |
コンパイル使用メモリ | 303,452 KB |
実行使用メモリ | 62,816 KB |
最終ジャッジ日時 | 2025-06-27 20:51:13 |
合計ジャッジ時間 | 12,835 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 16 TLE * 1 |
ソースコード
#include<bits/stdc++.h> using namespace std; #define rep(i,n) for (int i = 0; i < (int)(n); i++) #define repp(i,m,n) for (int i = (m); i < (int)(n); i++) #define all(v) (v).begin(),(v).end() using ull = unsigned long long; namespace noya2{ /* ~ (. _________ . /) */ } using namespace noya2; namespace noya2::internal { template<class E> struct csr { csr () {} csr (int _n) : n(_n) {} csr (int _n, int m) : n(_n){ start.reserve(m); elist.reserve(m); } // ACL style constructor (do not have to call build) csr (int _n, const std::vector<std::pair<int,E>> &idx_elem) : n(_n), start(_n + 2), elist(idx_elem.size()) { for (auto &[i, e] : idx_elem){ start[i + 2]++; } for (int i = 1; i < n; i++){ start[i + 2] += start[i + 1]; } for (auto &[i, e] : idx_elem){ elist[start[i + 1]++] = e; } prepared = true; } int add(int idx, E elem){ int eid = start.size(); start.emplace_back(idx); elist.emplace_back(elem); return eid; } void build(){ if (prepared) return ; int m = start.size(); std::vector<E> nelist(m); std::vector<int> nstart(n + 2, 0); for (int i = 0; i < m; i++){ nstart[start[i] + 2]++; } for (int i = 1; i < n; i++){ nstart[i + 2] += nstart[i + 1]; } for (int i = 0; i < m; i++){ nelist[nstart[start[i] + 1]++] = elist[i]; } swap(elist,nelist); swap(start,nstart); prepared = true; } const auto operator[](int idx) const { return std::ranges::subrange(elist.begin()+start[idx],elist.begin()+start[idx+1]); } auto operator[](int idx){ return std::ranges::subrange(elist.begin()+start[idx],elist.begin()+start[idx+1]); } const auto operator()(int idx, int l, int r) const { return std::ranges::subrange(elist.begin()+start[idx]+l,elist.begin()+start[idx]+r); } auto operator()(int idx, int l, int r){ return std::ranges::subrange(elist.begin()+start[idx]+l,elist.begin()+start[idx]+r); } size_t size() const { return n; } int n; std::vector<int> start; std::vector<E> elist; bool prepared = false; }; } // namespace noya2::internal struct simple_tree_for_yuki { internal::csr<int> g; simple_tree_for_yuki (int n) : g(n, (n - 1)*2) {} template<typename Stream> void input_edges(Stream &inputter){ for (int i = 0; i < g.n - 1; i++){ int u, v; inputter >> u >> v; u--, v--; g.add(u, v); g.add(v, u); } g.build(); } const auto operator[](int v) const { return g[v]; } auto operator[](int v){ return g[v]; } int size() const { return g.n; } }; struct hld_tree_for_yuki { int n, root; std::vector<int> down, nxt, sub, tour, dep; hld_tree_for_yuki (int _n) : n(_n), root(0), down(n), nxt(n), sub(n, 1), tour(n), dep(n) {} template<typename Stream> void input_edges(Stream &inputter){ for (int i = 1; i < n; i++){ int u, v; inputter >> u >> v; u--, v--; down[u]++; down[v]++; nxt[u] ^= v; nxt[v] ^= u; } build_from_edges(); } ull depth(int v) const { return dep[v]; } int leader(int v) const { return nxt[v] < 0 ? v : nxt[v]; } // down[v] : degree of v // nxt[v] : xor prod of neighbor of v void build_from_edges(){ // use tour as queue int back = 0; for (int u = 0; u < n; u++){ if (u != root && down[u] == 1){ tour[back++] = u; } } for (int front = 0; front < n - 1; front++){ int u = tour[front]; down[u] = -1; int v = nxt[u]; // parent of v nxt[v] ^= u; if (--down[v] == 1 && v != root){ tour[back++] = v; } } // check : now, tour is reverse of topological order tour.pop_back(); // check : now, down[*] <= 1 for (int u : tour){ int v = nxt[u]; // subtree size (initialized (1,1,...,1)) sub[v] += sub[u]; // heaviest subtree of its child if (down[v] < sub[u]){ down[v] = sub[u]; } } for (int u : tour){ int v = nxt[u]; // whether u is not the top of heavy path if (down[v] == sub[u]){ sub[u] = ~sub[u]; down[v] = ~down[v]; } } // after appearing v as u (or v == root), // down[v] is the visiting time of euler tour // nxt[v] is the lowest vertex of heavy path which contains v // (if v itself, nxt[v] is ~(parent of v)) // sub[v] + down[v] is the light child's starting time of euler tour // note : heavy child's visiting time of euler tour is (the time of its parent) + 1 sub[root] = ~down[root] + 1; down[root] = 0; nxt[root] = -1; for (int u : tour | std::views::reverse){ int v = nxt[u]; int nsub = ~down[u] + 1; // heavy child if (sub[u] < 0){ down[u] = down[v] + 1; nxt[u] = (nxt[v] < 0 ? v : nxt[v]); } // light child else { down[u] = down[v] + sub[v]; sub[v] += sub[u]; nxt[u] = ~v; } sub[u] = nsub; dep[u] = dep[v] + 1; } // tour is inverse permutation of down tour.push_back(root); for (int u = 0; u < n; u++){ tour[down[u]] = u; } } }; namespace noya2 { std::vector<int> centroid_decomposition(const auto &g){ int n = g.size(); if (n == 0){ return {}; } std::vector<int> sub(n), order; order.reserve(n); auto subtree = [&](auto sfs, int v, int f) -> void { sub[v] = 1; for (int u : g[v]){ if (u == f) continue; sfs(sfs, u, v); sub[v] += sub[u]; } }; subtree(subtree,0,-1); auto fixed_root = [&](auto self, int root, int par, int cur_size) -> void { auto dfs = [&](auto sfs, int v, int f, int sz) -> int { int heavy = 0, child = -1; for (int u : g[v]){ if (u == f) continue; if (heavy < sub[u]){ heavy = sub[u]; child = u; } } if (heavy > sz/2){ int ret = sfs(sfs, child, v, sz); sub[v] -= ret; return ret; } else { order.emplace_back(v); for (int u : g[v]){ if (u == f) continue; self(self, u, v, sub[u]); } int ret = sub[v]; sub[v] = 0; return ret; } }; while (cur_size > 0){ cur_size -= dfs(dfs, root, par, cur_size); } }; fixed_root(fixed_root, 0, -1, n); return order; } } // namespace noya2 int main(){ cin.tie(0)->sync_with_stdio(0); int n; cin >> n; simple_tree_for_yuki a(n); hld_tree_for_yuki b(n); a.input_edges(cin); b.input_edges(cin); vector<int> spfensz(n); rep(v,n){ int lv = b.leader(v); spfensz[lv] = max(spfensz[lv], b.down[v] - b.down[lv] + 1); } vector<array<ull,2>> spfenfront(n,array<ull,2>{}); vector<array<ull,4>> spfen(n,array<ull,4>{}); ull rootdepsum = 0, rootdistsum = 0; auto apply_from_root = [&](int v, int dist, int sgn){ ull x = 2 * sgn, y = 2 * dist * sgn; rootdepsum += x; rootdistsum += y; while (true){ int lv = b.leader(v); int start = b.down[lv]; int sz = spfensz[lv]; int r = b.down[v] + 1 - start; int memor = r; r++; while (r <= sz){ int id = r - 1 + start; spfen[id][0] += x * memor; spfen[id][1] += -x; spfen[id][2] += y * memor; spfen[id][3] += -y; r += r & -r; } spfenfront[start][0] += x; spfenfront[start][1] += y; if (lv == 0) break; v = ~b.nxt[lv]; } }; auto prod_from_root = [&](int v, int dist){ ull depsum = -rootdepsum, distsum = -rootdistsum; while (true){ int lv = b.leader(v); int start = b.down[lv]; int r = b.down[v] + 1 - start; int memor = r; array<ull,4> prod = {}; while (r > 0){ int id = r - 1 + start; rep(i,4){ prod[i] += spfen[id][i]; } r -= r & -r; } depsum += prod[0] + (prod[1] + spfenfront[start][0]) * memor; distsum += prod[2] + (prod[3] + spfenfront[start][1]) * memor; if (lv == 0) break; v = ~b.nxt[lv]; } return depsum * dist + distsum; }; vector<bool> done(n,false); ull ans = 0; for (int ctr : centroid_decomposition(a)){ done[ctr] = true; vector<pair<int,int>> vds = {{ctr,0}}; vector<int> start = {0,1}; auto dfs = [&](auto sfs, int v, int f, int dist) -> void { vds.emplace_back(v,dist); for (int u : a[v]){ if (done[u]) continue; if (u == f) continue; sfs(sfs,u,v,dist+1); } }; for (int v : a[ctr]){ if (done[v]) continue; dfs(dfs,v,ctr,1); start.emplace_back(vds.size()); } // numof u, dist[u], dep[u], dist[u]*dep[u] ull cnt = 0, distsum = 0, depsum = 0, prdsum = 0; int csz = start.size() - 2; // v : ctr [&]{ // dist[u] * dep[u] prdsum += 0; // dist[u] * dep[v] distsum += 0; // dist[v] * dep[u] depsum += b.depth(ctr); // dist[v] * dep[v] cnt += 1; // dist[u] * -2dep[lca(u,v)] // dist[v] * -2dep[lca(u,v)] apply_from_root(ctr, 0, -1); }(); auto proc1 = [&](int v, int dist){ // dist[u] * dep[u] ans += prdsum; // dist[u] * dep[v] ans += distsum * b.depth(v); // dist[v] * dep[u] ans += dist * depsum; // dist[v] * dep[v] ans += (ull)dist * b.depth(v) * cnt; // dist[u] * -2dep[lca(u,v)] // dist[v] * -2dep[lca(u,v)] ans += prod_from_root(v, dist); }; auto proc2 = [&](int v, int dist){ // dist[u] * dep[u] prdsum += (ull)dist * b.depth(v); // dist[u] * dep[v] distsum += dist; // dist[v] * dep[u] depsum += b.depth(v); // dist[v] * dep[v] cnt += 1; // dist[u] * -2dep[lca(u,v)] // dist[v] * -2dep[lca(u,v)] apply_from_root(v, dist, -1); }; auto proc3 = [&](int v, int dist){ // cancel of // dist[u] * -2dep[lca(u,v)] // dist[v] * -2dep[lca(u,v)] apply_from_root(v, dist, 1); }; rep(i,csz){ repp(j,start[i+1],start[i+2]){ auto [v, dist] = vds[j]; proc1(v,dist); } repp(j,start[i+1],start[i+2]){ auto [v, dist] = vds[j]; proc2(v,dist); } } rep(i,csz){ repp(j,start[i+1],start[i+2]){ auto [v, dist] = vds[j]; proc3(v,dist); } } [&]{ // cancel of // dist[u] * -2dep[lca(u,v)] // dist[v] * -2dep[lca(u,v)] apply_from_root(ctr, 0, 1); }(); } ans *= 2; cout << ans << endl; }