結果
問題 |
No.3194 Do Optimize Your Solution
|
ユーザー |
![]() |
提出日時 | 2025-06-27 22:56:32 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2,515 ms / 3,000 ms |
コード長 | 29,390 bytes |
コンパイル時間 | 2,543 ms |
コンパイル使用メモリ | 153,808 KB |
実行使用メモリ | 97,432 KB |
最終ジャッジ日時 | 2025-06-27 22:57:08 |
合計ジャッジ時間 | 24,750 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 17 |
ソースコード
// https://judge.yosupo.jp/submission/207115 // を書き換え #define PROBLEM "https://judge.yosupo.jp/problem/point_set_tree_path_composite_sum_fixed_root" #include <vector> #include <queue> #include <utility> #include <algorithm> #include <memory> #include <cassert> #include <array> namespace nachia{ template<class Elem> class CsrArray{ public: struct ListRange{ using iterator = typename std::vector<Elem>::iterator; iterator begi, endi; iterator begin() const { return begi; } iterator end() const { return endi; } int size() const { return (int)std::distance(begi, endi); } Elem& operator[](int i) const { return begi[i]; } }; struct ConstListRange{ using iterator = typename std::vector<Elem>::const_iterator; iterator begi, endi; iterator begin() const { return begi; } iterator end() const { return endi; } int size() const { return (int)std::distance(begi, endi); } const Elem& operator[](int i) const { return begi[i]; } }; private: int m_n; std::vector<Elem> m_list; std::vector<int> m_pos; public: CsrArray() : m_n(0), m_list(), m_pos() {} static CsrArray Construct(int n, std::vector<std::pair<int, Elem>> items){ CsrArray res; res.m_n = n; std::vector<int> buf(n+1, 0); for(auto& [u,v] : items){ ++buf[u]; } for(int i=1; i<=n; i++) buf[i] += buf[i-1]; res.m_list.resize(buf[n]); for(int i=(int)items.size()-1; i>=0; i--){ res.m_list[--buf[items[i].first]] = std::move(items[i].second); } res.m_pos = std::move(buf); return res; } static CsrArray FromRaw(std::vector<Elem> list, std::vector<int> pos){ CsrArray res; res.m_n = pos.size() - 1; res.m_list = std::move(list); res.m_pos = std::move(pos); return res; } ListRange operator[](int u) { return ListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; } ConstListRange operator[](int u) const { return ConstListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; } int size() const { return m_n; } int fullSize() const { return (int)m_list.size(); } }; } // namespace nachia namespace nachia{ struct Graph { public: struct Edge{ int from, to; void reverse(){ std::swap(from, to); } int xorval() const { return from ^ to; } }; Graph(int n = 0, bool undirected = false, int m = 0) : m_n(n), m_e(m), m_isUndir(undirected) {} Graph(int n, const std::vector<std::pair<int, int>>& edges, bool undirected = false) : m_n(n), m_isUndir(undirected){ m_e.resize(edges.size()); for(std::size_t i=0; i<edges.size(); i++) m_e[i] = { edges[i].first, edges[i].second }; } template<class Cin> static Graph Input(Cin& cin, int n, bool undirected, int m, bool offset = 0){ Graph res(n, undirected, m); for(int i=0; i<m; i++){ int u, v; cin >> u >> v; res[i].from = u - offset; res[i].to = v - offset; } return res; } int numVertices() const noexcept { return m_n; } int numEdges() const noexcept { return int(m_e.size()); } int addNode() noexcept { return m_n++; } int addEdge(int from, int to){ m_e.push_back({ from, to }); return numEdges() - 1; } Edge& operator[](int ei) noexcept { return m_e[ei]; } const Edge& operator[](int ei) const noexcept { return m_e[ei]; } Edge& at(int ei) { return m_e.at(ei); } const Edge& at(int ei) const { return m_e.at(ei); } auto begin(){ return m_e.begin(); } auto end(){ return m_e.end(); } auto begin() const { return m_e.begin(); } auto end() const { return m_e.end(); } bool isUndirected() const noexcept { return m_isUndir; } void reverseEdges() noexcept { for(auto& e : m_e) e.reverse(); } void contract(int newV, const std::vector<int>& mapping){ assert(numVertices() == int(mapping.size())); for(int i=0; i<numVertices(); i++) assert(0 <= mapping[i] && mapping[i] < newV); for(auto& e : m_e){ e.from = mapping[e.from]; e.to = mapping[e.to]; } m_n = newV; } std::vector<Graph> induce(int num, const std::vector<int>& mapping) const { int n = numVertices(); assert(n == int(mapping.size())); for(int i=0; i<n; i++) assert(-1 <= mapping[i] && mapping[i] < num); std::vector<int> indexV(n), newV(num); for(int i=0; i<n; i++) if(mapping[i] >= 0) indexV[i] = newV[mapping[i]]++; std::vector<Graph> res; res.reserve(num); for(int i=0; i<num; i++) res.emplace_back(newV[i], isUndirected()); for(auto e : m_e) if(mapping[e.from] == mapping[e.to] && mapping[e.to] >= 0) res[mapping[e.to]].addEdge(indexV[e.from], indexV[e.to]); return res; } CsrArray<int> getEdgeIndexArray(bool undirected) const { std::vector<std::pair<int, int>> src; src.reserve(numEdges() * (undirected ? 2 : 1)); for(int i=0; i<numEdges(); i++){ auto e = operator[](i); src.emplace_back(e.from, i); if(undirected) src.emplace_back(e.to, i); } return CsrArray<int>::Construct(numVertices(), src); } CsrArray<int> getEdgeIndexArray() const { return getEdgeIndexArray(isUndirected()); } CsrArray<int> getAdjacencyArray(bool undirected) const { std::vector<std::pair<int, int>> src; src.reserve(numEdges() * (undirected ? 2 : 1)); for(auto e : m_e){ src.emplace_back(e.from, e.to); if(undirected) src.emplace_back(e.to, e.from); } return CsrArray<int>::Construct(numVertices(), src); } CsrArray<int> getAdjacencyArray() const { return getAdjacencyArray(isUndirected()); } private: int m_n; std::vector<Edge> m_e; bool m_isUndir; }; } // namespace nachia namespace nachia { struct StaticTopTree { static const int TYPE_RAKE = 0; static const int TYPE_DANGLE = 1; static const int TYPE_COMPRESS = 2; static const int TYPE_SHUTOUT = 3; static const int TYPE_GAIN = 4; struct Node { int type; int arg1; int arg2; int arg3; int parent; }; std::vector<int> ordered; std::vector<Node> nodes; std::vector<int> handle_v; std::vector<int> handle_e; Graph dtree; StaticTopTree() {} StaticTopTree(const Graph& tree, int root){ int n = tree.numVertices(); auto adj = tree.getAdjacencyArray(); std::vector<int> parent(n, -1); std::vector<int> parentEdge(n, -1); std::vector<int> bfs(n); std::vector<int> sz(n, 1); std::vector<int> nx(n, -1); int z = 1; while((1<<z) < n) z++; handle_v.resize(n,-1); handle_e.resize(n-1,-1); int bfsi = 0; bfs[bfsi++] = root; for(int i=0; i<bfsi; i++){ int v = bfs[i]; for(int w : adj[v]) if(parent[v] != w){ parent[w] = v; bfs[bfsi++] = w; } } dtree = Graph(n, false, n-1); for(int e=0; e<n-1; e++){ auto [v,w] = tree[e]; if(parent[w] != v) std::swap(v, w); dtree[e].from = v; dtree[e].to = w; parentEdge[w] = e; } for(int i=n-1; i>=0; i--){ int v = bfs[i]; if(i) sz[parent[v]] += sz[v]; for(int w : adj[v]) if(w != parent[v]){ if(nx[v] == -1 || sz[nx[v]] < sz[w]) nx[v] = w; } } auto pushGain = [&](int v) -> int { nodes.push_back({ TYPE_GAIN,v,-2,-3,-1 }); return int(nodes.size()) - 1; }; auto pushNode1 = [&](int a, int b, int c, int d) -> int { int res = int(nodes.size()); nodes[b].parent = res; nodes.push_back({ a,b,c,d,-1 }); return res; }; auto pushNode2 = [&](int a, int b, int c, int d) -> int { int res = int(nodes.size()); nodes[b].parent = nodes[c].parent = res; nodes.push_back({ a,b,c,d,-1 }); return res; }; auto dfs_c_x = [&](auto& dfs_c, auto& dfs_h, int v) -> std::pair<int,int> { std::priority_queue<std::pair<int,int>> que; ordered.push_back(v); for(int w : adj[v]) if(w != parent[v] && w != nx[v]){ auto [h,s] = dfs_h(dfs_c, dfs_h, w); int e = parentEdge[w]; handle_e[e] = pushNode1(TYPE_DANGLE, s, e, w); que.push({ -(h+1), handle_e[e] }); } if(que.empty()){ handle_v[v] = pushGain(v); return std::make_pair(0, handle_v[v]); } while(que.size() >= 2){ auto [sv,vv] = que.top(); que.pop(); auto [sw,vw] = que.top(); que.pop(); int vx = pushNode2(TYPE_RAKE, vv, vw, v); que.push({ sw-1, vx }); } auto [h,s] = que.top(); handle_v[v] = pushNode1(TYPE_SHUTOUT, s, v, -4); return std::make_pair(-h+1, handle_v[v]); }; struct HPathNode { int h; int s; int e; }; auto dfs_h_x = [&](auto& dfs_c, auto& dfs_h, int u) -> std::pair<int,int> { std::vector<HPathNode> hpath; auto mergeBack2 = [&](){ auto hp = hpath.back(); hpath.pop_back(); auto hp2 = hpath.back(); hp2.s = (handle_e[hp.e] = pushNode2(TYPE_COMPRESS, hp2.s, hp.s, hp.e)); hp2.h++; hpath.back() = hp2; }; for(int v=u; v>=0; v=nx[v]){ auto [h,s] = dfs_c(dfs_c, dfs_h, v); int e = parentEdge[v]; while(hpath.size() >= 2 && hpath[hpath.size()-2].h <= h) mergeBack2(); while(!hpath.empty() && hpath.back().h <= h){ auto hp = hpath.back(); hpath.pop_back(); s = (handle_e[e] = pushNode2(TYPE_COMPRESS, hp.s, s, e)); h++; e = hp.e; } hpath.push_back({ h, s, e }); } while(hpath.size() >= 2) mergeBack2(); return std::make_pair(hpath.back().h, hpath.back().s); }; dfs_h_x(dfs_c_x, dfs_h_x, root); } int numNodes(){ return int(nodes.size()); } const Node& operator[](int i) const { return nodes[i]; } }; } // namespace nachia #include <optional> namespace nachia{ template<class Point, class Path> struct StaticTopTreeSystem{ template< class RakeFunc, class CompressFunc, class ShutoutFunc, class DangleFunc, class DegenerateFunc> struct StaticTopTreeSystemInst { RakeFunc rake; CompressFunc compress; ShutoutFunc shutout; DangleFunc dangle; DegenerateFunc degenerate; struct StaticTopTreeAggregation { union NodeData { int x = 0; Point o; Path l; NodeData(){} ~NodeData(){} }; StaticTopTreeSystemInst sys; StaticTopTree sttBase; std::vector<NodeData> data; StaticTopTreeAggregation() {} void updateNode(int i){ auto& v = sttBase[i]; switch(v.type){ case StaticTopTree::TYPE_RAKE: { new(&data[i].o) Point(sys.rake(data[v.arg1].o, data[v.arg2].o)); } break; case StaticTopTree::TYPE_DANGLE: { new(&data[i].o) Point(sys.dangle(v.arg2, data[v.arg1].l)); } break; case StaticTopTree::TYPE_COMPRESS: { int e = v.arg3; auto [w,x] = sttBase.dtree[e]; new(&data[i].l) Path(sys.compress(data[v.arg1].l, w, e, x, data[v.arg2].l)); } break; case StaticTopTree::TYPE_SHUTOUT: { new(&data[i].l) Path(sys.shutout(v.arg2, data[v.arg1].o)); } break; case StaticTopTree::TYPE_GAIN: { new(&data[i].l) Path(sys.degenerate(v.arg1)); } break; } } StaticTopTreeAggregation( StaticTopTreeSystemInst xsys, const Graph& tree, int root) : sys(std::move(xsys)) , sttBase(tree, root) , data(sttBase.numNodes()) { int sn = sttBase.numNodes(); for(int i=0; i<sn; i++) updateNode(i); } ~StaticTopTreeAggregation(){ int sn = sttBase.numNodes(); for(int i=0; i<sn; i++){ auto& v = sttBase[i]; switch(v.type){ case StaticTopTree::TYPE_RAKE: case StaticTopTree::TYPE_DANGLE: (&data[i].o)->~Point(); break; case StaticTopTree::TYPE_COMPRESS: case StaticTopTree::TYPE_SHUTOUT: case StaticTopTree::TYPE_GAIN: (&data[i].l)->~Path(); break; } } } int numNodes(){ return sttBase.numNodes(); } Path all(){ return data[numNodes()-1].l; } void updateVertex(int v){ for(int p=sttBase.handle_v[v]; p>=0; p=sttBase[p].parent) updateNode(p); } void updateEdge(int e){ for(int p=sttBase.handle_e[e]; p>=0; p=sttBase[p].parent) updateNode(p); } Path exposed1(int v){ int x = sttBase.handle_v[v]; if(sttBase[x].parent < 0) return data[x].l; auto up = [&](auto& rec, int p, int c) -> Point { std::optional<Point> mp = std::nullopt; auto addRake = [&](Point mmp){ if(mp.has_value()){ mp = sys.rake(mmp, mp.value()); } else { mp = mmp; } }; while(p >= 0 && sttBase[p].type == StaticTopTree::TYPE_RAKE){ int b = sttBase[p].arg1 ^ sttBase[p].arg2 ^ c; addRake(data[b].o); c = p; p = sttBase[p].parent; } if(p < 0) return mp.value(); int lpe = -1; std::optional<Path> lp = std::nullopt; int rpe = -1; std::optional<Path> rp = std::nullopt; while(p >= 0){ auto& v = sttBase[p]; if(sttBase[p].type == StaticTopTree::TYPE_COMPRESS){ int e = v.arg3; auto [w,x] = sttBase.dtree[e]; if(sttBase[p].arg1 == p){ if(rpe >= 0){ rp = sys.compress(rp.value(), w, e, x, data[v.arg2].l); } else { rpe = e; rp = data[v.arg2].l; } } else { if(lpe >= 0){ lp = sys.compress(data[v.arg1].l, w, e, x, lp.value()); } else { lpe = e; lp = data[v.arg1].l; } } } else { int e = v.arg2; auto [w,x] = sttBase.dtree[e]; int q = sttBase[p].parent; Path qc = (sttBase[q].type == StaticTopTree::TYPE_SHUTOUT && sttBase[q].parent < 0) ? sys.degenerate(sttBase[q].arg1) : sys.shutout(w, rec(rec, q, p)); if(lpe >= 0){ lp = sys.compress(qc, w, e, x, lp.value()); } else { lpe = e; lp = qc; } break; } c = p; p = sttBase[p].parent; } if(lpe >= 0) addRake(sys.dangle(lpe, lp.value().reversed())); if(rpe >= 0) addRake(sys.dangle(rpe, rp.value())); return mp.value(); }; auto pt = up(up, x, -1); return sys.shutout(v, pt); } }; auto newTree(const Graph& tree, int root){ return StaticTopTreeAggregation(*this, tree, root); } }; template< class RakeFunc, class CompressFunc, class ShutoutFunc, class DangleFunc, class DegenerateFunc> static auto Construct( RakeFunc rake, CompressFunc compress, ShutoutFunc shutout, DangleFunc dangle, DegenerateFunc degenerate ){ return StaticTopTreeSystemInst<RakeFunc, CompressFunc, ShutoutFunc, DangleFunc, DegenerateFunc>{ std::move(rake), std::move(compress), std::move(shutout), std::move(dangle), std::move(degenerate) }; } }; } // namespace nachia namespace nachia{ // ax + by = gcd(a,b) // return ( x, - ) std::pair<long long, long long> ExtGcd(long long a, long long b){ long long x = 1, y = 0; while(b){ long long u = a / b; std::swap(a-=b*u, b); std::swap(x-=y*u, y); } return std::make_pair(x, a); } } // namespace nachia namespace nachia{ template<unsigned int MOD> struct StaticModint{ private: using u64 = unsigned long long; unsigned int x; public: using my_type = StaticModint; template< class Elem > static Elem safe_mod(Elem x){ if(x < 0){ if(0 <= x+MOD) return x + MOD; return MOD - ((-(x+MOD)-1) % MOD + 1); } return x % MOD; } StaticModint() : x(0){} StaticModint(const my_type& a) : x(a.x){} StaticModint& operator=(const my_type&) = default; template< class Elem > StaticModint(Elem v) : x(safe_mod(v)){} unsigned int operator*() const noexcept { return x; } my_type& operator+=(const my_type& r) noexcept { auto t = x + r.x; if(t >= MOD) t -= MOD; x = t; return *this; } my_type operator+(const my_type& r) const noexcept { my_type res = *this; return res += r; } my_type& operator-=(const my_type& r) noexcept { auto t = x + MOD - r.x; if(t >= MOD) t -= MOD; x = t; return *this; } my_type operator-(const my_type& r) const noexcept { my_type res = *this; return res -= r; } my_type operator-() const noexcept { my_type res = *this; res.x = ((res.x == 0) ? 0 : (MOD - res.x)); return res; } my_type& operator*=(const my_type& r)noexcept { x = (u64)x * r.x % MOD; return *this; } my_type operator*(const my_type& r) const noexcept { my_type res = *this; return res *= r; } my_type pow(unsigned long long i) const noexcept { my_type a = *this, res = 1; while(i){ if(i & 1){ res *= a; } a *= a; i >>= 1; } return res; } my_type inv() const { return my_type(ExtGcd(x, MOD).first); } unsigned int val() const noexcept { return x; } static constexpr unsigned int mod() { return MOD; } static my_type raw(unsigned int val) noexcept { auto res = my_type(); res.x = val; return res; } my_type& operator/=(const my_type& r){ return operator*=(r.inv()); } my_type operator/(const my_type& r) const { return operator*(r.inv()); } }; } // namespace nachia #include <cstdio> #include <cctype> #include <cstdint> #include <string> namespace nachia{ struct CInStream{ private: static const unsigned int INPUT_BUF_SIZE = 1 << 17; unsigned int p = INPUT_BUF_SIZE; static char Q[INPUT_BUF_SIZE]; public: using MyType = CInStream; char seekChar(){ if(p == INPUT_BUF_SIZE){ size_t len = fread(Q, 1, INPUT_BUF_SIZE, stdin); if(len != INPUT_BUF_SIZE) Q[len] = '\0'; p = 0; } return Q[p]; } void skipSpace(){ while(isspace(seekChar())) p++; } private: template<class T, int sp = 1> T nextUInt(){ if constexpr (sp) skipSpace(); T buf = 0; while(true){ char tmp = seekChar(); if('9' < tmp || tmp < '0') break; buf = buf * 10 + (tmp - '0'); p++; } return buf; } public: uint32_t nextU32(){ return nextUInt<uint32_t>(); } int32_t nextI32(){ skipSpace(); if(seekChar() == '-'){ p++; return (int32_t)(-nextUInt<uint32_t, 0>()); } return (int32_t)nextUInt<uint32_t, 0>(); } uint64_t nextU64(){ return nextUInt<uint64_t>();} int64_t nextI64(){ skipSpace(); if(seekChar() == '-'){ p++; return (int64_t)(-nextUInt<int64_t, 0>()); } return (int64_t)nextUInt<int64_t, 0>(); } template<class T> T nextInt(){ skipSpace(); if(seekChar() == '-'){ p++; return - nextUInt<T, 0>(); } return nextUInt<T, 0>(); } char nextChar(){ skipSpace(); char buf = seekChar(); p++; return buf; } std::string nextToken(){ skipSpace(); std::string buf; while(true){ char ch = seekChar(); if(isspace(ch) || ch == '\0') break; buf.push_back(ch); p++; } return buf; } MyType& operator>>(unsigned int& dest){ dest = nextU32(); return *this; } MyType& operator>>(int& dest){ dest = nextI32(); return *this; } MyType& operator>>(unsigned long& dest){ dest = nextU64(); return *this; } MyType& operator>>(long& dest){ dest = nextI64(); return *this; } MyType& operator>>(unsigned long long& dest){ dest = nextU64(); return *this; } MyType& operator>>(long long& dest){ dest = nextI64(); return *this; } MyType& operator>>(std::string& dest){ dest = nextToken(); return *this; } MyType& operator>>(char& dest){ dest = nextChar(); return *this; } } cin; struct FastOutputTable{ char LZ[1000][4] = {}; char NLZ[1000][4] = {}; constexpr FastOutputTable(){ using u32 = uint_fast32_t; for(u32 d=0; d<1000; d++){ LZ[d][0] = ('0' + d / 100 % 10); LZ[d][1] = ('0' + d / 10 % 10); LZ[d][2] = ('0' + d / 1 % 10); LZ[d][3] = '\0'; } for(u32 d=0; d<1000; d++){ u32 i = 0; if(d >= 100) NLZ[d][i++] = ('0' + d / 100 % 10); if(d >= 10) NLZ[d][i++] = ('0' + d / 10 % 10); if(d >= 1) NLZ[d][i++] = ('0' + d / 1 % 10); NLZ[d][i++] = '\0'; } } }; struct COutStream{ private: using u32 = uint32_t; using u64 = uint64_t; using MyType = COutStream; static const u32 OUTPUT_BUF_SIZE = 1 << 17; static char Q[OUTPUT_BUF_SIZE]; static constexpr FastOutputTable TB = FastOutputTable(); u32 p = 0; static constexpr u32 P10(u32 d){ return d ? P10(d-1)*10 : 1; } static constexpr u64 P10L(u32 d){ return d ? P10L(d-1)*10 : 1; } template<class T, class U> static void Fil(T& m, U& l, U x){ m = l/x; l -= m*x; } public: void next_dig9(u32 x){ u32 y; Fil(y, x, P10(6)); nextCstr(TB.LZ[y]); Fil(y, x, P10(3)); nextCstr(TB.LZ[y]); nextCstr(TB.LZ[x]); } void nextChar(char c){ Q[p++] = c; if(p == OUTPUT_BUF_SIZE){ fwrite(Q, p, 1, stdout); p = 0; } } void nextEoln(){ nextChar('\n'); } void nextCstr(const char* s){ while(*s) nextChar(*(s++)); } void nextU32(uint32_t x){ u32 y = 0; if(x >= P10(9)){ Fil(y, x, P10(9)); nextCstr(TB.NLZ[y]); next_dig9(x); } else if(x >= P10(6)){ Fil(y, x, P10(6)); nextCstr(TB.NLZ[y]); Fil(y, x, P10(3)); nextCstr(TB.LZ[y]); nextCstr(TB.LZ[x]); } else if(x >= P10(3)){ Fil(y, x, P10(3)); nextCstr(TB.NLZ[y]); nextCstr(TB.LZ[x]); } else if(x >= 1) nextCstr(TB.NLZ[x]); else nextChar('0'); } void nextI32(int32_t x){ if(x >= 0) nextU32(x); else{ nextChar('-'); nextU32((u32)-x); } } void nextU64(uint64_t x){ u32 y = 0; if(x >= P10L(18)){ Fil(y, x, P10L(18)); nextU32(y); Fil(y, x, P10L(9)); next_dig9(y); next_dig9(x); } else if(x >= P10L(9)){ Fil(y, x, P10L(9)); nextU32(y); next_dig9(x); } else nextU32(x); } void nextI64(int64_t x){ if(x >= 0) nextU64(x); else{ nextChar('-'); nextU64((u64)-x); } } template<class T> void nextInt(T x){ if(x < 0){ nextChar('-'); x = -x; } if(!(0 < x)){ nextChar('0'); return; } std::string buf; while(0 < x){ buf.push_back('0' + (int)(x % 10)); x /= 10; } for(int i=(int)buf.size()-1; i>=0; i--){ nextChar(buf[i]); } } void writeToFile(bool flush = false){ fwrite(Q, p, 1, stdout); if(flush) fflush(stdout); p = 0; } COutStream(){ Q[0] = 0; } ~COutStream(){ writeToFile(); } MyType& operator<<(unsigned int tg){ nextU32(tg); return *this; } MyType& operator<<(unsigned long tg){ nextU64(tg); return *this; } MyType& operator<<(unsigned long long tg){ nextU64(tg); return *this; } MyType& operator<<(int tg){ nextI32(tg); return *this; } MyType& operator<<(long tg){ nextI64(tg); return *this; } MyType& operator<<(long long tg){ nextI64(tg); return *this; } MyType& operator<<(const std::string& tg){ nextCstr(tg.c_str()); return *this; } MyType& operator<<(const char* tg){ nextCstr(tg); return *this; } MyType& operator<<(char tg){ nextChar(tg); return *this; } } cout; char CInStream::Q[INPUT_BUF_SIZE]; char COutStream::Q[OUTPUT_BUF_SIZE]; } // namespace nachia int main(){ using nachia::cin; using nachia::cout; int N; cin >> N; auto tree = nachia::Graph(N, true); using u64 = uint64_t; struct Point { std::array<u64, 2> cnt; std::array<u64, 2> sum; u64 ans; }; struct Path { std::array<u64, 2> cnt; std::array<u64, 2> ls; std::array<u64, 2> rs; u64 ans; u64 len; }; for(int i=0; i<N-1; i++){ int u,v; cin >> u >> v; u--; v--; tree.addEdge(u,v); } std::vector<std::vector<int>> h(N); for (int i = 1; i < N; ++i) { int u, v; cin >> u >> v; u--; v--; h[u].push_back(v); h[v].push_back(u); } auto hld = [&](auto self, int v) -> int { int s = 1; int key = 0; for (std::size_t j = 0; j < h[v].size(); ++j) { const int u = h[v][j]; for (std::size_t i = 0; i < h[u].size(); ++i) { if (h[u][i] == v) { h[u].erase(h[u].begin() + i); break; } } int k = self(self, u); if (k > key) { if (j > 0) { std::swap(h[v][0], h[v][j]); } key = k; } s += k; } return s; }; hld(hld, 0); std::vector<int> vertex(N, 0); auto sys = nachia::StaticTopTreeSystem<Point, Path>::Construct( [](Point a, Point b) -> Point { Point c; c.ans = a.ans + b.ans; for (int i = 0; i < 2; ++i) { c.cnt[i] = a.cnt[i] + b.cnt[i]; c.sum[i] = a.sum[i] + b.sum[i]; c.ans += a.cnt[i] * b.sum[i ^ 1]; c.ans += a.sum[i] * b.cnt[i ^ 1]; } return c; }, [&](Path a, int u, int e, int v, Path b) -> Path { Path c; c.ans = a.ans + b.ans; c.len = a.len + b.len + 1; for (int i = 0; i < 2; ++i) { c.cnt[i] = a.cnt[i] + b.cnt[i]; c.ls[i] = a.ls[i] + b.ls[i] + (1 + a.len) * b.cnt[i]; c.rs[i] = a.rs[i] + (1 + b.len) * a.cnt[i] + b.rs[i]; c.ans += a.cnt[i] * b.cnt[i ^ 1]; c.ans += a.cnt[i] * b.ls[i ^ 1]; c.ans += a.rs[i] * b.cnt[i ^ 1]; } return c; }, [&](int v, Point p) -> Path { Path c; c.cnt = p.cnt; c.ls = p.sum; c.rs = p.sum; c.ans = p.ans; c.len = 0; const auto x = vertex[v]; c.ans += p.sum[x ^ 1]; c.cnt[x] += 1; return c; }, [&](int e, Path p) -> Point { Point c; c.cnt = p.cnt; c.sum = {p.ls[0] + p.cnt[0], p.ls[1] + p.cnt[1]}; c.ans = p.ans; return c; }, [&](int v) -> Path { Path c; c.cnt = {0, 0}; c.ls = {0, 0}; c.rs = {0, 0}; c.ans = c.len = 0; const auto x = vertex[v]; c.cnt[x] += 1; return c; } ); auto stt = sys.newTree(tree, 0); stt.all(); auto flip = [&](auto self, int v) -> void { vertex[v] ^= 1; stt.updateVertex(v); for (const auto u : h[v]) { self(self, u); } }; u64 ans = 0; auto sack = [&](auto self, int v, bool save) -> void { for (std::size_t j = h[v].size(); j > 0; --j) { self(self, h[v][j - 1], j == 1); } for (std::size_t j = 1; j < h[v].size(); ++j) { flip(flip, h[v][j]); } vertex[v] ^= 1; stt.updateVertex(v); auto val = stt.all(); ans += val.ans; if (!save) { flip(flip, v); } }; sack(sack, 0, true); cout << ans * 2 << "\n"; return 0; }