結果
| 問題 |
No.3194 Do Optimize Your Solution
|
| コンテスト | |
| ユーザー |
akakimidori
|
| 提出日時 | 2025-06-27 22:56:32 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2,515 ms / 3,000 ms |
| コード長 | 29,390 bytes |
| コンパイル時間 | 2,543 ms |
| コンパイル使用メモリ | 153,808 KB |
| 実行使用メモリ | 97,432 KB |
| 最終ジャッジ日時 | 2025-06-27 22:57:08 |
| 合計ジャッジ時間 | 24,750 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 17 |
ソースコード
// https://judge.yosupo.jp/submission/207115
// を書き換え
#define PROBLEM "https://judge.yosupo.jp/problem/point_set_tree_path_composite_sum_fixed_root"
#include <vector>
#include <queue>
#include <utility>
#include <algorithm>
#include <memory>
#include <cassert>
#include <array>
namespace nachia{
template<class Elem>
class CsrArray{
public:
struct ListRange{
using iterator = typename std::vector<Elem>::iterator;
iterator begi, endi;
iterator begin() const { return begi; }
iterator end() const { return endi; }
int size() const { return (int)std::distance(begi, endi); }
Elem& operator[](int i) const { return begi[i]; }
};
struct ConstListRange{
using iterator = typename std::vector<Elem>::const_iterator;
iterator begi, endi;
iterator begin() const { return begi; }
iterator end() const { return endi; }
int size() const { return (int)std::distance(begi, endi); }
const Elem& operator[](int i) const { return begi[i]; }
};
private:
int m_n;
std::vector<Elem> m_list;
std::vector<int> m_pos;
public:
CsrArray() : m_n(0), m_list(), m_pos() {}
static CsrArray Construct(int n, std::vector<std::pair<int, Elem>> items){
CsrArray res;
res.m_n = n;
std::vector<int> buf(n+1, 0);
for(auto& [u,v] : items){ ++buf[u]; }
for(int i=1; i<=n; i++) buf[i] += buf[i-1];
res.m_list.resize(buf[n]);
for(int i=(int)items.size()-1; i>=0; i--){
res.m_list[--buf[items[i].first]] = std::move(items[i].second);
}
res.m_pos = std::move(buf);
return res;
}
static CsrArray FromRaw(std::vector<Elem> list, std::vector<int> pos){
CsrArray res;
res.m_n = pos.size() - 1;
res.m_list = std::move(list);
res.m_pos = std::move(pos);
return res;
}
ListRange operator[](int u) { return ListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; }
ConstListRange operator[](int u) const { return ConstListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; }
int size() const { return m_n; }
int fullSize() const { return (int)m_list.size(); }
};
} // namespace nachia
namespace nachia{
struct Graph {
public:
struct Edge{
int from, to;
void reverse(){ std::swap(from, to); }
int xorval() const { return from ^ to; }
};
Graph(int n = 0, bool undirected = false, int m = 0) : m_n(n), m_e(m), m_isUndir(undirected) {}
Graph(int n, const std::vector<std::pair<int, int>>& edges, bool undirected = false) : m_n(n), m_isUndir(undirected){
m_e.resize(edges.size());
for(std::size_t i=0; i<edges.size(); i++) m_e[i] = { edges[i].first, edges[i].second };
}
template<class Cin>
static Graph Input(Cin& cin, int n, bool undirected, int m, bool offset = 0){
Graph res(n, undirected, m);
for(int i=0; i<m; i++){
int u, v; cin >> u >> v;
res[i].from = u - offset;
res[i].to = v - offset;
}
return res;
}
int numVertices() const noexcept { return m_n; }
int numEdges() const noexcept { return int(m_e.size()); }
int addNode() noexcept { return m_n++; }
int addEdge(int from, int to){ m_e.push_back({ from, to }); return numEdges() - 1; }
Edge& operator[](int ei) noexcept { return m_e[ei]; }
const Edge& operator[](int ei) const noexcept { return m_e[ei]; }
Edge& at(int ei) { return m_e.at(ei); }
const Edge& at(int ei) const { return m_e.at(ei); }
auto begin(){ return m_e.begin(); }
auto end(){ return m_e.end(); }
auto begin() const { return m_e.begin(); }
auto end() const { return m_e.end(); }
bool isUndirected() const noexcept { return m_isUndir; }
void reverseEdges() noexcept { for(auto& e : m_e) e.reverse(); }
void contract(int newV, const std::vector<int>& mapping){
assert(numVertices() == int(mapping.size()));
for(int i=0; i<numVertices(); i++) assert(0 <= mapping[i] && mapping[i] < newV);
for(auto& e : m_e){ e.from = mapping[e.from]; e.to = mapping[e.to]; }
m_n = newV;
}
std::vector<Graph> induce(int num, const std::vector<int>& mapping) const {
int n = numVertices();
assert(n == int(mapping.size()));
for(int i=0; i<n; i++) assert(-1 <= mapping[i] && mapping[i] < num);
std::vector<int> indexV(n), newV(num);
for(int i=0; i<n; i++) if(mapping[i] >= 0) indexV[i] = newV[mapping[i]]++;
std::vector<Graph> res; res.reserve(num);
for(int i=0; i<num; i++) res.emplace_back(newV[i], isUndirected());
for(auto e : m_e) if(mapping[e.from] == mapping[e.to] && mapping[e.to] >= 0) res[mapping[e.to]].addEdge(indexV[e.from], indexV[e.to]);
return res;
}
CsrArray<int> getEdgeIndexArray(bool undirected) const {
std::vector<std::pair<int, int>> src;
src.reserve(numEdges() * (undirected ? 2 : 1));
for(int i=0; i<numEdges(); i++){
auto e = operator[](i);
src.emplace_back(e.from, i);
if(undirected) src.emplace_back(e.to, i);
}
return CsrArray<int>::Construct(numVertices(), src);
}
CsrArray<int> getEdgeIndexArray() const { return getEdgeIndexArray(isUndirected()); }
CsrArray<int> getAdjacencyArray(bool undirected) const {
std::vector<std::pair<int, int>> src;
src.reserve(numEdges() * (undirected ? 2 : 1));
for(auto e : m_e){
src.emplace_back(e.from, e.to);
if(undirected) src.emplace_back(e.to, e.from);
}
return CsrArray<int>::Construct(numVertices(), src);
}
CsrArray<int> getAdjacencyArray() const { return getAdjacencyArray(isUndirected()); }
private:
int m_n;
std::vector<Edge> m_e;
bool m_isUndir;
};
} // namespace nachia
namespace nachia {
struct StaticTopTree {
static const int TYPE_RAKE = 0;
static const int TYPE_DANGLE = 1;
static const int TYPE_COMPRESS = 2;
static const int TYPE_SHUTOUT = 3;
static const int TYPE_GAIN = 4;
struct Node {
int type;
int arg1;
int arg2;
int arg3;
int parent;
};
std::vector<int> ordered;
std::vector<Node> nodes;
std::vector<int> handle_v;
std::vector<int> handle_e;
Graph dtree;
StaticTopTree() {}
StaticTopTree(const Graph& tree, int root){
int n = tree.numVertices();
auto adj = tree.getAdjacencyArray();
std::vector<int> parent(n, -1);
std::vector<int> parentEdge(n, -1);
std::vector<int> bfs(n);
std::vector<int> sz(n, 1);
std::vector<int> nx(n, -1);
int z = 1; while((1<<z) < n) z++;
handle_v.resize(n,-1);
handle_e.resize(n-1,-1);
int bfsi = 0;
bfs[bfsi++] = root;
for(int i=0; i<bfsi; i++){
int v = bfs[i];
for(int w : adj[v]) if(parent[v] != w){
parent[w] = v; bfs[bfsi++] = w;
}
}
dtree = Graph(n, false, n-1);
for(int e=0; e<n-1; e++){
auto [v,w] = tree[e];
if(parent[w] != v) std::swap(v, w);
dtree[e].from = v;
dtree[e].to = w;
parentEdge[w] = e;
}
for(int i=n-1; i>=0; i--){
int v = bfs[i];
if(i) sz[parent[v]] += sz[v];
for(int w : adj[v]) if(w != parent[v]){
if(nx[v] == -1 || sz[nx[v]] < sz[w]) nx[v] = w;
}
}
auto pushGain = [&](int v) -> int {
nodes.push_back({ TYPE_GAIN,v,-2,-3,-1 });
return int(nodes.size()) - 1;
};
auto pushNode1 = [&](int a, int b, int c, int d) -> int {
int res = int(nodes.size());
nodes[b].parent = res;
nodes.push_back({ a,b,c,d,-1 });
return res;
};
auto pushNode2 = [&](int a, int b, int c, int d) -> int {
int res = int(nodes.size());
nodes[b].parent = nodes[c].parent = res;
nodes.push_back({ a,b,c,d,-1 });
return res;
};
auto dfs_c_x = [&](auto& dfs_c, auto& dfs_h, int v) -> std::pair<int,int> {
std::priority_queue<std::pair<int,int>> que;
ordered.push_back(v);
for(int w : adj[v]) if(w != parent[v] && w != nx[v]){
auto [h,s] = dfs_h(dfs_c, dfs_h, w);
int e = parentEdge[w];
handle_e[e] = pushNode1(TYPE_DANGLE, s, e, w);
que.push({ -(h+1), handle_e[e] });
}
if(que.empty()){
handle_v[v] = pushGain(v);
return std::make_pair(0, handle_v[v]);
}
while(que.size() >= 2){
auto [sv,vv] = que.top(); que.pop();
auto [sw,vw] = que.top(); que.pop();
int vx = pushNode2(TYPE_RAKE, vv, vw, v);
que.push({ sw-1, vx });
}
auto [h,s] = que.top();
handle_v[v] = pushNode1(TYPE_SHUTOUT, s, v, -4);
return std::make_pair(-h+1, handle_v[v]);
};
struct HPathNode { int h; int s; int e; };
auto dfs_h_x = [&](auto& dfs_c, auto& dfs_h, int u) -> std::pair<int,int> {
std::vector<HPathNode> hpath;
auto mergeBack2 = [&](){
auto hp = hpath.back(); hpath.pop_back();
auto hp2 = hpath.back();
hp2.s = (handle_e[hp.e] = pushNode2(TYPE_COMPRESS, hp2.s, hp.s, hp.e));
hp2.h++;
hpath.back() = hp2;
};
for(int v=u; v>=0; v=nx[v]){
auto [h,s] = dfs_c(dfs_c, dfs_h, v);
int e = parentEdge[v];
while(hpath.size() >= 2 && hpath[hpath.size()-2].h <= h) mergeBack2();
while(!hpath.empty() && hpath.back().h <= h){
auto hp = hpath.back(); hpath.pop_back();
s = (handle_e[e] = pushNode2(TYPE_COMPRESS, hp.s, s, e));
h++; e = hp.e;
}
hpath.push_back({ h, s, e });
}
while(hpath.size() >= 2) mergeBack2();
return std::make_pair(hpath.back().h, hpath.back().s);
};
dfs_h_x(dfs_c_x, dfs_h_x, root);
}
int numNodes(){ return int(nodes.size()); }
const Node& operator[](int i) const { return nodes[i]; }
};
} // namespace nachia
#include <optional>
namespace nachia{
template<class Point, class Path>
struct StaticTopTreeSystem{
template<
class RakeFunc, class CompressFunc,
class ShutoutFunc, class DangleFunc, class DegenerateFunc>
struct StaticTopTreeSystemInst {
RakeFunc rake;
CompressFunc compress;
ShutoutFunc shutout;
DangleFunc dangle;
DegenerateFunc degenerate;
struct StaticTopTreeAggregation {
union NodeData {
int x = 0;
Point o;
Path l;
NodeData(){}
~NodeData(){}
};
StaticTopTreeSystemInst sys;
StaticTopTree sttBase;
std::vector<NodeData> data;
StaticTopTreeAggregation() {}
void updateNode(int i){
auto& v = sttBase[i];
switch(v.type){
case StaticTopTree::TYPE_RAKE: {
new(&data[i].o) Point(sys.rake(data[v.arg1].o, data[v.arg2].o));
} break;
case StaticTopTree::TYPE_DANGLE: {
new(&data[i].o) Point(sys.dangle(v.arg2, data[v.arg1].l));
} break;
case StaticTopTree::TYPE_COMPRESS: {
int e = v.arg3;
auto [w,x] = sttBase.dtree[e];
new(&data[i].l) Path(sys.compress(data[v.arg1].l, w, e, x, data[v.arg2].l));
} break;
case StaticTopTree::TYPE_SHUTOUT: {
new(&data[i].l) Path(sys.shutout(v.arg2, data[v.arg1].o));
} break;
case StaticTopTree::TYPE_GAIN: {
new(&data[i].l) Path(sys.degenerate(v.arg1));
} break;
}
}
StaticTopTreeAggregation(
StaticTopTreeSystemInst xsys, const Graph& tree, int root)
: sys(std::move(xsys))
, sttBase(tree, root)
, data(sttBase.numNodes())
{
int sn = sttBase.numNodes();
for(int i=0; i<sn; i++) updateNode(i);
}
~StaticTopTreeAggregation(){
int sn = sttBase.numNodes();
for(int i=0; i<sn; i++){
auto& v = sttBase[i];
switch(v.type){
case StaticTopTree::TYPE_RAKE:
case StaticTopTree::TYPE_DANGLE:
(&data[i].o)->~Point(); break;
case StaticTopTree::TYPE_COMPRESS:
case StaticTopTree::TYPE_SHUTOUT:
case StaticTopTree::TYPE_GAIN:
(&data[i].l)->~Path(); break;
}
}
}
int numNodes(){ return sttBase.numNodes(); }
Path all(){ return data[numNodes()-1].l; }
void updateVertex(int v){
for(int p=sttBase.handle_v[v]; p>=0; p=sttBase[p].parent) updateNode(p);
}
void updateEdge(int e){
for(int p=sttBase.handle_e[e]; p>=0; p=sttBase[p].parent) updateNode(p);
}
Path exposed1(int v){
int x = sttBase.handle_v[v];
if(sttBase[x].parent < 0) return data[x].l;
auto up = [&](auto& rec, int p, int c) -> Point {
std::optional<Point> mp = std::nullopt;
auto addRake = [&](Point mmp){
if(mp.has_value()){
mp = sys.rake(mmp, mp.value());
} else { mp = mmp; }
};
while(p >= 0 && sttBase[p].type == StaticTopTree::TYPE_RAKE){
int b = sttBase[p].arg1 ^ sttBase[p].arg2 ^ c;
addRake(data[b].o);
c = p; p = sttBase[p].parent;
}
if(p < 0) return mp.value();
int lpe = -1;
std::optional<Path> lp = std::nullopt;
int rpe = -1;
std::optional<Path> rp = std::nullopt;
while(p >= 0){
auto& v = sttBase[p];
if(sttBase[p].type == StaticTopTree::TYPE_COMPRESS){
int e = v.arg3;
auto [w,x] = sttBase.dtree[e];
if(sttBase[p].arg1 == p){
if(rpe >= 0){
rp = sys.compress(rp.value(), w, e, x, data[v.arg2].l);
} else {
rpe = e; rp = data[v.arg2].l;
}
} else {
if(lpe >= 0){
lp = sys.compress(data[v.arg1].l, w, e, x, lp.value());
} else {
lpe = e; lp = data[v.arg1].l;
}
}
} else {
int e = v.arg2;
auto [w,x] = sttBase.dtree[e];
int q = sttBase[p].parent;
Path qc = (sttBase[q].type == StaticTopTree::TYPE_SHUTOUT
&& sttBase[q].parent < 0)
? sys.degenerate(sttBase[q].arg1)
: sys.shutout(w, rec(rec, q, p));
if(lpe >= 0){
lp = sys.compress(qc, w, e, x, lp.value());
} else { lpe = e; lp = qc; }
break;
}
c = p; p = sttBase[p].parent;
}
if(lpe >= 0) addRake(sys.dangle(lpe, lp.value().reversed()));
if(rpe >= 0) addRake(sys.dangle(rpe, rp.value()));
return mp.value();
};
auto pt = up(up, x, -1);
return sys.shutout(v, pt);
}
};
auto newTree(const Graph& tree, int root){
return StaticTopTreeAggregation(*this, tree, root);
}
};
template<
class RakeFunc, class CompressFunc,
class ShutoutFunc, class DangleFunc, class DegenerateFunc>
static auto Construct(
RakeFunc rake,
CompressFunc compress,
ShutoutFunc shutout,
DangleFunc dangle,
DegenerateFunc degenerate
){
return StaticTopTreeSystemInst<RakeFunc, CompressFunc, ShutoutFunc, DangleFunc, DegenerateFunc>{
std::move(rake), std::move(compress),
std::move(shutout), std::move(dangle), std::move(degenerate) };
}
};
} // namespace nachia
namespace nachia{
// ax + by = gcd(a,b)
// return ( x, - )
std::pair<long long, long long> ExtGcd(long long a, long long b){
long long x = 1, y = 0;
while(b){
long long u = a / b;
std::swap(a-=b*u, b);
std::swap(x-=y*u, y);
}
return std::make_pair(x, a);
}
} // namespace nachia
namespace nachia{
template<unsigned int MOD>
struct StaticModint{
private:
using u64 = unsigned long long;
unsigned int x;
public:
using my_type = StaticModint;
template< class Elem >
static Elem safe_mod(Elem x){
if(x < 0){
if(0 <= x+MOD) return x + MOD;
return MOD - ((-(x+MOD)-1) % MOD + 1);
}
return x % MOD;
}
StaticModint() : x(0){}
StaticModint(const my_type& a) : x(a.x){}
StaticModint& operator=(const my_type&) = default;
template< class Elem >
StaticModint(Elem v) : x(safe_mod(v)){}
unsigned int operator*() const noexcept { return x; }
my_type& operator+=(const my_type& r) noexcept { auto t = x + r.x; if(t >= MOD) t -= MOD; x = t; return *this; }
my_type operator+(const my_type& r) const noexcept { my_type res = *this; return res += r; }
my_type& operator-=(const my_type& r) noexcept { auto t = x + MOD - r.x; if(t >= MOD) t -= MOD; x = t; return *this; }
my_type operator-(const my_type& r) const noexcept { my_type res = *this; return res -= r; }
my_type operator-() const noexcept { my_type res = *this; res.x = ((res.x == 0) ? 0 : (MOD - res.x)); return res; }
my_type& operator*=(const my_type& r)noexcept { x = (u64)x * r.x % MOD; return *this; }
my_type operator*(const my_type& r) const noexcept { my_type res = *this; return res *= r; }
my_type pow(unsigned long long i) const noexcept {
my_type a = *this, res = 1;
while(i){ if(i & 1){ res *= a; } a *= a; i >>= 1; }
return res;
}
my_type inv() const { return my_type(ExtGcd(x, MOD).first); }
unsigned int val() const noexcept { return x; }
static constexpr unsigned int mod() { return MOD; }
static my_type raw(unsigned int val) noexcept { auto res = my_type(); res.x = val; return res; }
my_type& operator/=(const my_type& r){ return operator*=(r.inv()); }
my_type operator/(const my_type& r) const { return operator*(r.inv()); }
};
} // namespace nachia
#include <cstdio>
#include <cctype>
#include <cstdint>
#include <string>
namespace nachia{
struct CInStream{
private:
static const unsigned int INPUT_BUF_SIZE = 1 << 17;
unsigned int p = INPUT_BUF_SIZE;
static char Q[INPUT_BUF_SIZE];
public:
using MyType = CInStream;
char seekChar(){
if(p == INPUT_BUF_SIZE){
size_t len = fread(Q, 1, INPUT_BUF_SIZE, stdin);
if(len != INPUT_BUF_SIZE) Q[len] = '\0';
p = 0;
}
return Q[p];
}
void skipSpace(){ while(isspace(seekChar())) p++; }
private:
template<class T, int sp = 1>
T nextUInt(){
if constexpr (sp) skipSpace();
T buf = 0;
while(true){
char tmp = seekChar();
if('9' < tmp || tmp < '0') break;
buf = buf * 10 + (tmp - '0');
p++;
}
return buf;
}
public:
uint32_t nextU32(){ return nextUInt<uint32_t>(); }
int32_t nextI32(){
skipSpace();
if(seekChar() == '-'){
p++; return (int32_t)(-nextUInt<uint32_t, 0>());
}
return (int32_t)nextUInt<uint32_t, 0>();
}
uint64_t nextU64(){ return nextUInt<uint64_t>();}
int64_t nextI64(){
skipSpace();
if(seekChar() == '-'){
p++; return (int64_t)(-nextUInt<int64_t, 0>());
}
return (int64_t)nextUInt<int64_t, 0>();
}
template<class T>
T nextInt(){
skipSpace();
if(seekChar() == '-'){
p++;
return - nextUInt<T, 0>();
}
return nextUInt<T, 0>();
}
char nextChar(){ skipSpace(); char buf = seekChar(); p++; return buf; }
std::string nextToken(){
skipSpace();
std::string buf;
while(true){
char ch = seekChar();
if(isspace(ch) || ch == '\0') break;
buf.push_back(ch);
p++;
}
return buf;
}
MyType& operator>>(unsigned int& dest){ dest = nextU32(); return *this; }
MyType& operator>>(int& dest){ dest = nextI32(); return *this; }
MyType& operator>>(unsigned long& dest){ dest = nextU64(); return *this; }
MyType& operator>>(long& dest){ dest = nextI64(); return *this; }
MyType& operator>>(unsigned long long& dest){ dest = nextU64(); return *this; }
MyType& operator>>(long long& dest){ dest = nextI64(); return *this; }
MyType& operator>>(std::string& dest){ dest = nextToken(); return *this; }
MyType& operator>>(char& dest){ dest = nextChar(); return *this; }
} cin;
struct FastOutputTable{
char LZ[1000][4] = {};
char NLZ[1000][4] = {};
constexpr FastOutputTable(){
using u32 = uint_fast32_t;
for(u32 d=0; d<1000; d++){
LZ[d][0] = ('0' + d / 100 % 10);
LZ[d][1] = ('0' + d / 10 % 10);
LZ[d][2] = ('0' + d / 1 % 10);
LZ[d][3] = '\0';
}
for(u32 d=0; d<1000; d++){
u32 i = 0;
if(d >= 100) NLZ[d][i++] = ('0' + d / 100 % 10);
if(d >= 10) NLZ[d][i++] = ('0' + d / 10 % 10);
if(d >= 1) NLZ[d][i++] = ('0' + d / 1 % 10);
NLZ[d][i++] = '\0';
}
}
};
struct COutStream{
private:
using u32 = uint32_t;
using u64 = uint64_t;
using MyType = COutStream;
static const u32 OUTPUT_BUF_SIZE = 1 << 17;
static char Q[OUTPUT_BUF_SIZE];
static constexpr FastOutputTable TB = FastOutputTable();
u32 p = 0;
static constexpr u32 P10(u32 d){ return d ? P10(d-1)*10 : 1; }
static constexpr u64 P10L(u32 d){ return d ? P10L(d-1)*10 : 1; }
template<class T, class U> static void Fil(T& m, U& l, U x){ m = l/x; l -= m*x; }
public:
void next_dig9(u32 x){
u32 y;
Fil(y, x, P10(6));
nextCstr(TB.LZ[y]);
Fil(y, x, P10(3));
nextCstr(TB.LZ[y]); nextCstr(TB.LZ[x]);
}
void nextChar(char c){
Q[p++] = c;
if(p == OUTPUT_BUF_SIZE){ fwrite(Q, p, 1, stdout); p = 0; }
}
void nextEoln(){ nextChar('\n'); }
void nextCstr(const char* s){ while(*s) nextChar(*(s++)); }
void nextU32(uint32_t x){
u32 y = 0;
if(x >= P10(9)){
Fil(y, x, P10(9));
nextCstr(TB.NLZ[y]); next_dig9(x);
}
else if(x >= P10(6)){
Fil(y, x, P10(6));
nextCstr(TB.NLZ[y]);
Fil(y, x, P10(3));
nextCstr(TB.LZ[y]); nextCstr(TB.LZ[x]);
}
else if(x >= P10(3)){
Fil(y, x, P10(3));
nextCstr(TB.NLZ[y]); nextCstr(TB.LZ[x]);
}
else if(x >= 1) nextCstr(TB.NLZ[x]);
else nextChar('0');
}
void nextI32(int32_t x){
if(x >= 0) nextU32(x);
else{ nextChar('-'); nextU32((u32)-x); }
}
void nextU64(uint64_t x){
u32 y = 0;
if(x >= P10L(18)){
Fil(y, x, P10L(18));
nextU32(y);
Fil(y, x, P10L(9));
next_dig9(y); next_dig9(x);
}
else if(x >= P10L(9)){
Fil(y, x, P10L(9));
nextU32(y); next_dig9(x);
}
else nextU32(x);
}
void nextI64(int64_t x){
if(x >= 0) nextU64(x);
else{ nextChar('-'); nextU64((u64)-x); }
}
template<class T>
void nextInt(T x){
if(x < 0){ nextChar('-'); x = -x; }
if(!(0 < x)){ nextChar('0'); return; }
std::string buf;
while(0 < x){
buf.push_back('0' + (int)(x % 10));
x /= 10;
}
for(int i=(int)buf.size()-1; i>=0; i--){
nextChar(buf[i]);
}
}
void writeToFile(bool flush = false){
fwrite(Q, p, 1, stdout);
if(flush) fflush(stdout);
p = 0;
}
COutStream(){ Q[0] = 0; }
~COutStream(){ writeToFile(); }
MyType& operator<<(unsigned int tg){ nextU32(tg); return *this; }
MyType& operator<<(unsigned long tg){ nextU64(tg); return *this; }
MyType& operator<<(unsigned long long tg){ nextU64(tg); return *this; }
MyType& operator<<(int tg){ nextI32(tg); return *this; }
MyType& operator<<(long tg){ nextI64(tg); return *this; }
MyType& operator<<(long long tg){ nextI64(tg); return *this; }
MyType& operator<<(const std::string& tg){ nextCstr(tg.c_str()); return *this; }
MyType& operator<<(const char* tg){ nextCstr(tg); return *this; }
MyType& operator<<(char tg){ nextChar(tg); return *this; }
} cout;
char CInStream::Q[INPUT_BUF_SIZE];
char COutStream::Q[OUTPUT_BUF_SIZE];
} // namespace nachia
int main(){
using nachia::cin;
using nachia::cout;
int N; cin >> N;
auto tree = nachia::Graph(N, true);
using u64 = uint64_t;
struct Point {
std::array<u64, 2> cnt;
std::array<u64, 2> sum;
u64 ans;
};
struct Path {
std::array<u64, 2> cnt;
std::array<u64, 2> ls;
std::array<u64, 2> rs;
u64 ans;
u64 len;
};
for(int i=0; i<N-1; i++){
int u,v; cin >> u >> v;
u--;
v--;
tree.addEdge(u,v);
}
std::vector<std::vector<int>> h(N);
for (int i = 1; i < N; ++i) {
int u, v;
cin >> u >> v;
u--;
v--;
h[u].push_back(v);
h[v].push_back(u);
}
auto hld = [&](auto self, int v) -> int {
int s = 1;
int key = 0;
for (std::size_t j = 0; j < h[v].size(); ++j) {
const int u = h[v][j];
for (std::size_t i = 0; i < h[u].size(); ++i) {
if (h[u][i] == v) {
h[u].erase(h[u].begin() + i);
break;
}
}
int k = self(self, u);
if (k > key) {
if (j > 0) {
std::swap(h[v][0], h[v][j]);
}
key = k;
}
s += k;
}
return s;
};
hld(hld, 0);
std::vector<int> vertex(N, 0);
auto sys = nachia::StaticTopTreeSystem<Point, Path>::Construct(
[](Point a, Point b) -> Point {
Point c;
c.ans = a.ans + b.ans;
for (int i = 0; i < 2; ++i) {
c.cnt[i] = a.cnt[i] + b.cnt[i];
c.sum[i] = a.sum[i] + b.sum[i];
c.ans += a.cnt[i] * b.sum[i ^ 1];
c.ans += a.sum[i] * b.cnt[i ^ 1];
}
return c;
},
[&](Path a, int u, int e, int v, Path b) -> Path {
Path c;
c.ans = a.ans + b.ans;
c.len = a.len + b.len + 1;
for (int i = 0; i < 2; ++i) {
c.cnt[i] = a.cnt[i] + b.cnt[i];
c.ls[i] = a.ls[i] + b.ls[i] + (1 + a.len) * b.cnt[i];
c.rs[i] = a.rs[i] + (1 + b.len) * a.cnt[i] + b.rs[i];
c.ans += a.cnt[i] * b.cnt[i ^ 1];
c.ans += a.cnt[i] * b.ls[i ^ 1];
c.ans += a.rs[i] * b.cnt[i ^ 1];
}
return c;
},
[&](int v, Point p) -> Path {
Path c;
c.cnt = p.cnt;
c.ls = p.sum;
c.rs = p.sum;
c.ans = p.ans;
c.len = 0;
const auto x = vertex[v];
c.ans += p.sum[x ^ 1];
c.cnt[x] += 1;
return c;
},
[&](int e, Path p) -> Point {
Point c;
c.cnt = p.cnt;
c.sum = {p.ls[0] + p.cnt[0], p.ls[1] + p.cnt[1]};
c.ans = p.ans;
return c;
},
[&](int v) -> Path {
Path c;
c.cnt = {0, 0};
c.ls = {0, 0};
c.rs = {0, 0};
c.ans = c.len = 0;
const auto x = vertex[v];
c.cnt[x] += 1;
return c;
}
);
auto stt = sys.newTree(tree, 0);
stt.all();
auto flip = [&](auto self, int v) -> void {
vertex[v] ^= 1;
stt.updateVertex(v);
for (const auto u : h[v]) {
self(self, u);
}
};
u64 ans = 0;
auto sack = [&](auto self, int v, bool save) -> void {
for (std::size_t j = h[v].size(); j > 0; --j) {
self(self, h[v][j - 1], j == 1);
}
for (std::size_t j = 1; j < h[v].size(); ++j) {
flip(flip, h[v][j]);
}
vertex[v] ^= 1;
stt.updateVertex(v);
auto val = stt.all();
ans += val.ans;
if (!save) {
flip(flip, v);
}
};
sack(sack, 0, true);
cout << ans * 2 << "\n";
return 0;
}
akakimidori