結果
| 問題 |
No.3194 Do Optimize Your Solution
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-06-27 23:01:23 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2,628 ms / 3,000 ms |
| コード長 | 24,538 bytes |
| コンパイル時間 | 3,985 ms |
| コンパイル使用メモリ | 289,808 KB |
| 実行使用メモリ | 106,284 KB |
| 最終ジャッジ日時 | 2025-06-27 23:02:03 |
| 合計ジャッジ時間 | 26,712 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 17 |
ソースコード
/**
* date : 2025-06-27 23:01:16
* author : Nyaan
*/
#define NDEBUG
using namespace std;
// intrinstic
#include <immintrin.h>
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tr2/dynamic_bitset>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
// utility
namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;
template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;
template <typename T, typename U>
struct P : pair<T, U> {
template <typename... Args>
constexpr P(Args... args) : pair<T, U>(args...) {}
using pair<T, U>::first;
using pair<T, U>::second;
P &operator+=(const P &r) {
first += r.first;
second += r.second;
return *this;
}
P &operator-=(const P &r) {
first -= r.first;
second -= r.second;
return *this;
}
P &operator*=(const P &r) {
first *= r.first;
second *= r.second;
return *this;
}
template <typename S>
P &operator*=(const S &r) {
first *= r, second *= r;
return *this;
}
P operator+(const P &r) const { return P(*this) += r; }
P operator-(const P &r) const { return P(*this) -= r; }
P operator*(const P &r) const { return P(*this) *= r; }
template <typename S>
P operator*(const S &r) const {
return P(*this) *= r;
}
P operator-() const { return P{-first, -second}; }
};
using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;
constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;
template <typename T>
int sz(const T &t) {
return t.size();
}
template <typename T, typename U>
inline bool amin(T &x, U y) {
return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
inline T Max(const vector<T> &v) {
return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
return accumulate(begin(v), end(v), 0LL);
}
template <typename T>
int lb(const vector<T> &v, const T &a) {
return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
return upper_bound(begin(v), end(v), a) - begin(v);
}
constexpr long long TEN(int n) {
long long ret = 1, x = 10;
for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
return ret;
}
template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
return make_pair(t, u);
}
template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
vector<T> ret(v.size() + 1);
if (rev) {
for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
} else {
for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
}
return ret;
};
template <typename T>
vector<T> mkuni(const vector<T> &v) {
vector<T> ret(v);
sort(ret.begin(), ret.end());
ret.erase(unique(ret.begin(), ret.end()), ret.end());
return ret;
}
template <typename F>
vector<int> mkord(int N, F f) {
vector<int> ord(N);
iota(begin(ord), end(ord), 0);
sort(begin(ord), end(ord), f);
return ord;
}
template <typename T>
vector<int> mkinv(vector<T> &v) {
int max_val = *max_element(begin(v), end(v));
vector<int> inv(max_val + 1, -1);
for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
return inv;
}
vector<int> mkiota(int n) {
vector<int> ret(n);
iota(begin(ret), end(ret), 0);
return ret;
}
template <typename T>
T mkrev(const T &v) {
T w{v};
reverse(begin(w), end(w));
return w;
}
template <typename T>
bool nxp(T &v) {
return next_permutation(begin(v), end(v));
}
// 返り値の型は入力の T に依存
// i 要素目 : [0, a[i])
template <typename T>
vector<vector<T>> product(const vector<T> &a) {
vector<vector<T>> ret;
vector<T> v;
auto dfs = [&](auto rc, int i) -> void {
if (i == (int)a.size()) {
ret.push_back(v);
return;
}
for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
};
dfs(dfs, 0);
return ret;
}
// F : function(void(T&)), mod を取る操作
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
T res = I;
for (; n; f(a = a * a), n >>= 1) {
if (n & 1) f(res = res * a);
}
return res;
}
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I = T{1}) {
return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
}
template <typename T>
T Rev(const T &v) {
T res = v;
reverse(begin(res), end(res));
return res;
}
template <typename T>
vector<T> Transpose(const vector<T> &v) {
using U = typename T::value_type;
if(v.empty()) return {};
int H = v.size(), W = v[0].size();
vector res(W, T(H, U{}));
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
res[j][i] = v[i][j];
}
}
return res;
}
template <typename T>
vector<T> Rotate(const vector<T> &v, int clockwise = true) {
using U = typename T::value_type;
int H = v.size(), W = v[0].size();
vector res(W, T(H, U{}));
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
if (clockwise) {
res[W - 1 - j][i] = v[i][j];
} else {
res[j][H - 1 - i] = v[i][j];
}
}
}
return res;
}
} // namespace Nyaan
// bit operation
namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
return __builtin_popcountll(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
} // namespace Nyaan
// inout
namespace Nyaan {
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
os << p.first << " " << p.second;
return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
int s = (int)v.size();
for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (auto &x : v) is >> x;
return is;
}
istream &operator>>(istream &is, __int128_t &x) {
string S;
is >> S;
x = 0;
int flag = 0;
for (auto &c : S) {
if (c == '-') {
flag = true;
continue;
}
x *= 10;
x += c - '0';
}
if (flag) x = -x;
return is;
}
istream &operator>>(istream &is, __uint128_t &x) {
string S;
is >> S;
x = 0;
for (auto &c : S) {
x *= 10;
x += c - '0';
}
return is;
}
ostream &operator<<(ostream &os, __int128_t x) {
if (x == 0) return os << 0;
if (x < 0) os << '-', x = -x;
string S;
while (x) S.push_back('0' + x % 10), x /= 10;
reverse(begin(S), end(S));
return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
if (x == 0) return os << 0;
string S;
while (x) S.push_back('0' + x % 10), x /= 10;
reverse(begin(S), end(S));
return os << S;
}
void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
cin >> t;
in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
cout << t;
if (sizeof...(u)) cout << sep;
out(u...);
}
struct IoSetupNya {
IoSetupNya() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
cerr << fixed << setprecision(7);
}
} iosetupnya;
} // namespace Nyaan
// debug
#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif
#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif
// macro
#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...) \
int __VA_ARGS__; \
in(__VA_ARGS__)
#define inl(...) \
long long __VA_ARGS__; \
in(__VA_ARGS__)
#define ins(...) \
string __VA_ARGS__; \
in(__VA_ARGS__)
#define in2(s, t) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i]); \
}
#define in3(s, t, u) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i]); \
}
#define in4(s, t, u, v) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i], v[i]); \
}
#define die(...) \
do { \
Nyaan::out(__VA_ARGS__); \
return; \
} while (0)
namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }
//
template <typename T>
struct edge {
int src, to;
T cost;
edge(int _to, T _cost) : src(-1), to(_to), cost(_cost) {}
edge(int _src, int _to, T _cost) : src(_src), to(_to), cost(_cost) {}
edge &operator=(const int &x) {
to = x;
return *this;
}
operator int() const { return to; }
};
template <typename T>
using Edges = vector<edge<T>>;
template <typename T>
using WeightedGraph = vector<Edges<T>>;
using UnweightedGraph = vector<vector<int>>;
// Input of (Unweighted) Graph
UnweightedGraph graph(int N, int M = -1, bool is_directed = false,
bool is_1origin = true) {
UnweightedGraph g(N);
if (M == -1) M = N - 1;
for (int _ = 0; _ < M; _++) {
int x, y;
cin >> x >> y;
if (is_1origin) x--, y--;
g[x].push_back(y);
if (!is_directed) g[y].push_back(x);
}
return g;
}
// Input of Weighted Graph
template <typename T>
WeightedGraph<T> wgraph(int N, int M = -1, bool is_directed = false,
bool is_1origin = true) {
WeightedGraph<T> g(N);
if (M == -1) M = N - 1;
for (int _ = 0; _ < M; _++) {
int x, y;
cin >> x >> y;
T c;
cin >> c;
if (is_1origin) x--, y--;
g[x].emplace_back(x, y, c);
if (!is_directed) g[y].emplace_back(y, x, c);
}
return g;
}
// Input of Edges
template <typename T>
Edges<T> esgraph([[maybe_unused]] int N, int M, int is_weighted = true,
bool is_1origin = true) {
Edges<T> es;
for (int _ = 0; _ < M; _++) {
int x, y;
cin >> x >> y;
T c;
if (is_weighted)
cin >> c;
else
c = 1;
if (is_1origin) x--, y--;
es.emplace_back(x, y, c);
}
return es;
}
// Input of Adjacency Matrix
template <typename T>
vector<vector<T>> adjgraph(int N, int M, T INF, int is_weighted = true,
bool is_directed = false, bool is_1origin = true) {
vector<vector<T>> d(N, vector<T>(N, INF));
for (int _ = 0; _ < M; _++) {
int x, y;
cin >> x >> y;
T c;
if (is_weighted)
cin >> c;
else
c = 1;
if (is_1origin) x--, y--;
d[x][y] = c;
if (!is_directed) d[y][x] = c;
}
return d;
}
/**
* @brief グラフテンプレート
* @docs docs/graph/graph-template.md
*/
template <typename G>
struct DSUonTree {
private:
G &g;
int N;
vector<int> sub_sz, euler, down, up;
int idx_;
int root;
int dfs1(int cur, int par = -1) {
sub_sz[cur] = 1;
if ((int)g[cur].size() >= 2 and g[cur][0] == par) {
swap(g[cur][0], g[cur][1]);
}
for (auto &dst : g[cur]) {
if (dst == par) continue;
sub_sz[cur] += dfs1(dst, cur);
if (sub_sz[dst] > sub_sz[g[cur][0]]) swap(dst, g[cur][0]);
}
return sub_sz[cur];
}
void dfs2(int cur, int par = -1) {
euler[idx_] = cur;
down[cur] = idx_++;
for (auto &dst : g[cur]) {
if (dst == par) continue;
dfs2(dst, cur);
}
up[cur] = idx_;
}
public:
DSUonTree(G &_g,int _root = 0)
: g(_g),
N(_g.size()),
sub_sz(_g.size()),
euler(_g.size()),
down(_g.size()),
up(_g.size()),
idx_(0),
root(_root) {
dfs1(root);
dfs2(root);
}
int idx(int u) const { return down[u]; }
template <typename UPDATE, typename QUERY, typename CLEAR, typename RESET>
void run(UPDATE &update, QUERY &query, CLEAR &clear, RESET &reset) {
auto dsu = [&](auto rc, int cur, int par = -1, bool keep = false) -> void {
for (int i = 1; i < (int)g[cur].size(); i++)
if (g[cur][i] != par) rc(rc, g[cur][i], cur, false);
if (sub_sz[cur] != 1) rc(rc, g[cur][0], cur, true);
if (sub_sz[cur] != 1)
for (int i = up[g[cur][0]]; i < up[cur]; i++) update(euler[i]);
update(cur);
query(cur);
if (!keep) {
for (int i = down[cur]; i < up[cur]; i++) clear(euler[i]);
reset();
}
return;
};
dsu(dsu, root);
}
};
/**
* @brief DSU on Tree(Guni)
* @docs docs/tree/dsu-on-tree.md
*/
using namespace std;
template <typename T>
struct has_cost {
private:
template <typename U>
static auto confirm(U u) -> decltype(u.cost, std::true_type());
static auto confirm(...) -> std::false_type;
public:
enum : bool { value = decltype(confirm(std::declval<T>()))::value };
};
template <typename T>
vector<vector<T>> inverse_tree(const vector<vector<T>>& g) {
int N = (int)g.size();
vector<vector<T>> rg(N);
for (int i = 0; i < N; i++) {
for (auto& e : g[i]) {
if constexpr (is_same<T, int>::value) {
rg[e].push_back(i);
} else if constexpr (has_cost<T>::value) {
rg[e].emplace_back(e.to, i, e.cost);
} else {
assert(0);
}
}
}
return rg;
}
template <typename T>
vector<vector<T>> rooted_tree(const vector<vector<T>>& g, int root = 0) {
int N = (int)g.size();
vector<vector<T>> rg(N);
vector<char> v(N, false);
v[root] = true;
queue<int> que;
que.emplace(root);
while (!que.empty()) {
auto p = que.front();
que.pop();
for (auto& e : g[p]) {
if (v[e] == false) {
v[e] = true;
que.push(e);
rg[p].push_back(e);
}
}
}
return rg;
}
/**
* @brief 根付き木・逆辺からなる木への変換
*/
template <typename G>
struct HeavyLightDecomposition {
private:
void dfs_sz(int cur) {
size[cur] = 1;
for (auto& dst : g[cur]) {
if (dst == par[cur]) {
if (g[cur].size() >= 2 && int(dst) == int(g[cur][0]))
swap(g[cur][0], g[cur][1]);
else
continue;
}
depth[dst] = depth[cur] + 1;
par[dst] = cur;
dfs_sz(dst);
size[cur] += size[dst];
if (size[dst] > size[g[cur][0]]) {
swap(dst, g[cur][0]);
}
}
}
void dfs_hld(int cur) {
down[cur] = id++;
for (auto dst : g[cur]) {
if (dst == par[cur]) continue;
nxt[dst] = (int(dst) == int(g[cur][0]) ? nxt[cur] : int(dst));
dfs_hld(dst);
}
up[cur] = id;
}
// [u, v)
vector<pair<int, int>> ascend(int u, int v) const {
vector<pair<int, int>> res;
while (nxt[u] != nxt[v]) {
res.emplace_back(down[u], down[nxt[u]]);
u = par[nxt[u]];
}
if (u != v) res.emplace_back(down[u], down[v] + 1);
return res;
}
// (u, v]
vector<pair<int, int>> descend(int u, int v) const {
if (u == v) return {};
if (nxt[u] == nxt[v]) return {{down[u] + 1, down[v]}};
auto res = descend(u, par[nxt[v]]);
res.emplace_back(down[nxt[v]], down[v]);
return res;
}
public:
G& g;
int root, id;
vector<int> size, depth, down, up, nxt, par;
HeavyLightDecomposition(G& _g, int _root = 0)
: g(_g),
root(_root),
id(0),
size(g.size(), 0),
depth(g.size(), 0),
down(g.size(), -1),
up(g.size(), -1),
nxt(g.size(), root),
par(g.size(), root) {
dfs_sz(root);
dfs_hld(root);
}
pair<int, int> idx(int i) const { return make_pair(down[i], up[i]); }
template <typename F>
void path_query(int u, int v, bool vertex, const F& f) {
int l = lca(u, v);
for (auto&& [a, b] : ascend(u, l)) {
int s = a + 1, t = b;
s > t ? f(t, s) : f(s, t);
}
if (vertex) f(down[l], down[l] + 1);
for (auto&& [a, b] : descend(l, v)) {
int s = a, t = b + 1;
s > t ? f(t, s) : f(s, t);
}
}
template <typename F>
void path_noncommutative_query(int u, int v, bool vertex, const F& f) {
int l = lca(u, v);
for (auto&& [a, b] : ascend(u, l)) f(a + 1, b);
if (vertex) f(down[l], down[l] + 1);
for (auto&& [a, b] : descend(l, v)) f(a, b + 1);
}
template <typename F>
void subtree_query(int u, bool vertex, const F& f) {
f(down[u] + int(!vertex), up[u]);
}
int lca(int a, int b) {
while (nxt[a] != nxt[b]) {
if (down[a] < down[b]) swap(a, b);
a = par[nxt[a]];
}
return depth[a] < depth[b] ? a : b;
}
int dist(int a, int b) { return depth[a] + depth[b] - depth[lca(a, b)] * 2; }
};
/**
* @brief Heavy Light Decomposition(重軽分解)
* @docs docs/tree/heavy-light-decomposition.md
*/
namespace StaticTopTreeImpl {
enum Type { Edge, Compress, Rake };
template <typename G>
struct StaticTopTree {
const HeavyLightDecomposition<G>& hld;
G g;
int root; // 元の木の root
int tt_root; // top tree の root
vector<int> P, L, R;
vector<Type> T;
StaticTopTree(const HeavyLightDecomposition<G>& _hld) : hld(_hld) {
root = hld.root;
g = rooted_tree(hld.g, root);
int n = g.size();
P.resize(n, -1), L.resize(n, -1), R.resize(n, -1);
T.resize(n, Type::Edge);
build();
}
private:
int add(int l, int r, Type t) {
if (t == Type::Compress or t == Type::Rake) {
assert(l != -1 and r != -1);
}
assert(t != Type::Edge);
int k = P.size();
P.push_back(-1), L.push_back(l), R.push_back(r), T.push_back(t);
if (l != -1) P[l] = k;
if (r != -1) P[r] = k;
return k;
}
pair<int, int> merge(const vector<pair<int, int>>& a, Type t) {
assert(!a.empty());
if (a.size() == 1) return a[0];
int sum_s = 0;
for (auto& [_, s] : a) sum_s += s;
vector<pair<int, int>> b, c;
for (auto& [i, s] : a) {
(sum_s > s ? b : c).emplace_back(i, s);
sum_s -= s * 2;
}
auto [i, si] = merge(b, t);
auto [j, sj] = merge(c, t);
return {add(i, j, t), si + sj};
}
pair<int, int> compress(int i) {
vector<pair<int, int>> chs{{i, 1}};
while (!g[i].empty()) {
chs.push_back(rake(i));
i = g[i][0];
}
return merge(chs, Type::Compress);
}
pair<int, int> rake(int i) {
vector<pair<int, int>> chs{{g[i][0], 1}};
for (int j = 1; j < (int)g[i].size(); j++) chs.push_back(compress(g[i][j]));
return merge(chs, Type::Rake);
}
void build() {
auto [i, n] = compress(root);
assert((int)g.size() == n);
assert((int)P.size() == n * 2 - 1);
tt_root = i;
}
};
template <typename G, typename Data, typename Edge, typename Compress,
typename Rake>
struct DPonStaticTopTree {
const StaticTopTree<G> tt;
vector<Data> dat;
const Edge edge;
const Compress compress;
const Rake rake;
DPonStaticTopTree(const HeavyLightDecomposition<G>& hld, const Edge& _edge,
const Compress& _compress, const Rake& _rake)
: tt(hld), edge(_edge), compress(_compress), rake(_rake) {
int n = tt.P.size();
dat.resize(n);
dfs(tt.tt_root);
}
Data get() { return dat[tt.tt_root]; }
void update(int k) {
while (k != -1) _update(k), k = tt.P[k];
}
private:
void _update(int k) {
if (tt.T[k] == Type::Edge) {
dat[k] = edge(k);
} else if (tt.T[k] == Type::Compress) {
dat[k] = compress(dat[tt.L[k]], dat[tt.R[k]]);
} else if (tt.T[k] == Type::Rake) {
dat[k] = rake(dat[tt.L[k]], dat[tt.R[k]]);
}
}
void dfs(int k) {
if (tt.L[k] != -1) dfs(tt.L[k]);
if (tt.R[k] != -1) dfs(tt.R[k]);
_update(k);
}
};
} // namespace StaticTopTreeImpl
using StaticTopTreeImpl::DPonStaticTopTree;
using StaticTopTreeImpl::StaticTopTree;
/*
// template
using Data = ;
auto edge = [&](int i) -> Data {
};
auto compress = [&](const Data& p, const Data& c) -> Data {
};
auto rake = [&](const Data& p, const Data& c) -> Data {
};
HeavyLightDecomposition hld{g};
DPonStaticTopTree<vector<vector<int>>, Data, decltype(edge),
decltype(compress), decltype(rake)>
dp(hld, edge, compress, rake);
*/
using namespace Nyaan;
struct Data {
u64 bnum, blw, bhi;
u64 wnum, wlw, whi;
u64 ans;
u64 dia;
};
void q() {
ini(N);
auto gA = graph(N);
auto gB = graph(N);
vi col(N);
// template
auto edge = [&](int i) -> Data {
if (col[i] == 0) return {1, 0, 1, 0, 0, 0, 0, 1};
return {0, 0, 0, 1, 0, 1, 0, 1};
};
auto compress = [&](const Data& p, const Data& c) -> Data {
Data dat;
dat.bnum = p.bnum + c.bnum;
dat.blw = p.blw + c.blw + p.bnum * c.dia;
dat.bhi = p.bhi + c.bhi + c.bnum * p.dia;
dat.wnum = p.wnum + c.wnum;
dat.wlw = p.wlw + c.wlw + p.wnum * c.dia;
dat.whi = p.whi + c.whi + c.wnum * p.dia;
dat.ans = p.ans + c.ans + c.bhi * p.wnum + c.whi * p.bnum + p.blw * c.wnum +
p.wlw * c.bnum;
dat.dia = p.dia + c.dia;
return dat;
};
auto rake = [&](const Data& p, const Data& c) -> Data {
Data dat;
dat.bnum = p.bnum + c.bnum;
dat.blw = p.blw + c.bhi + c.bnum * p.dia;
dat.bhi = p.bhi + c.bhi;
dat.wnum = p.wnum + c.wnum;
dat.wlw = p.wlw + c.whi + c.wnum * p.dia;
dat.whi = p.whi + c.whi;
dat.ans = p.ans + c.ans + c.bhi * p.wnum + c.whi * p.bnum + p.bhi * c.wnum +
p.whi * c.bnum;
dat.dia = p.dia;
return dat;
};
HeavyLightDecomposition hld{gB};
DPonStaticTopTree<vector<vector<int>>, Data, decltype(edge),
decltype(compress), decltype(rake)>
dp(hld, edge, compress, rake);
u64 ans = 0;
// reflect data of node i
auto update = [&](int i) {
trc("flip", i);
col[i] ^= 1;
dp.update(i);
};
// answer queries of subtree i
auto query = [&](int cur) {
auto dat = dp.get();
trc(cur);
trc(dat.bnum, dat.bhi, dat.blw);
trc(dat.wnum, dat.whi, dat.wlw);
trc(dat.ans, dat.dia);
ans += dat.ans;
};
// below two function are called if all data must be deleted
// delete data of node i (if necesarry)
auto clear = [&](int i) {
trc("flip", i);
col[i] ^= 1;
dp.update(i);
};
// delete data related to all (if necesarry)
auto reset = [&]() {};
DSUonTree<decltype(gA)> dsu(gA, 0);
dsu.run(update, query, clear, reset);
out(ans * 2);
}
void Nyaan::solve() {
int t = 1;
// in(t);
while (t--) q();
}