結果
問題 |
No.3194 Do Optimize Your Solution
|
ユーザー |
|
提出日時 | 2025-06-27 23:01:23 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2,628 ms / 3,000 ms |
コード長 | 24,538 bytes |
コンパイル時間 | 3,985 ms |
コンパイル使用メモリ | 289,808 KB |
実行使用メモリ | 106,284 KB |
最終ジャッジ日時 | 2025-06-27 23:02:03 |
合計ジャッジ時間 | 26,712 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 17 |
ソースコード
/** * date : 2025-06-27 23:01:16 * author : Nyaan */ #define NDEBUG using namespace std; // intrinstic #include <immintrin.h> #include <algorithm> #include <array> #include <bitset> #include <cassert> #include <cctype> #include <cfenv> #include <cfloat> #include <chrono> #include <cinttypes> #include <climits> #include <cmath> #include <complex> #include <cstdarg> #include <cstddef> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <deque> #include <fstream> #include <functional> #include <initializer_list> #include <iomanip> #include <ios> #include <iostream> #include <istream> #include <iterator> #include <limits> #include <list> #include <map> #include <memory> #include <new> #include <numeric> #include <ostream> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <streambuf> #include <string> #include <tr2/dynamic_bitset> #include <tuple> #include <type_traits> #include <typeinfo> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> // utility namespace Nyaan { using ll = long long; using i64 = long long; using u64 = unsigned long long; using i128 = __int128_t; using u128 = __uint128_t; template <typename T> using V = vector<T>; template <typename T> using VV = vector<vector<T>>; using vi = vector<int>; using vl = vector<long long>; using vd = V<double>; using vs = V<string>; using vvi = vector<vector<int>>; using vvl = vector<vector<long long>>; template <typename T> using minpq = priority_queue<T, vector<T>, greater<T>>; template <typename T, typename U> struct P : pair<T, U> { template <typename... Args> constexpr P(Args... args) : pair<T, U>(args...) {} using pair<T, U>::first; using pair<T, U>::second; P &operator+=(const P &r) { first += r.first; second += r.second; return *this; } P &operator-=(const P &r) { first -= r.first; second -= r.second; return *this; } P &operator*=(const P &r) { first *= r.first; second *= r.second; return *this; } template <typename S> P &operator*=(const S &r) { first *= r, second *= r; return *this; } P operator+(const P &r) const { return P(*this) += r; } P operator-(const P &r) const { return P(*this) -= r; } P operator*(const P &r) const { return P(*this) *= r; } template <typename S> P operator*(const S &r) const { return P(*this) *= r; } P operator-() const { return P{-first, -second}; } }; using pl = P<ll, ll>; using pi = P<int, int>; using vp = V<pl>; constexpr int inf = 1001001001; constexpr long long infLL = 4004004004004004004LL; template <typename T> int sz(const T &t) { return t.size(); } template <typename T, typename U> inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template <typename T, typename U> inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template <typename T> inline T Max(const vector<T> &v) { return *max_element(begin(v), end(v)); } template <typename T> inline T Min(const vector<T> &v) { return *min_element(begin(v), end(v)); } template <typename T> inline long long Sum(const vector<T> &v) { return accumulate(begin(v), end(v), 0LL); } template <typename T> int lb(const vector<T> &v, const T &a) { return lower_bound(begin(v), end(v), a) - begin(v); } template <typename T> int ub(const vector<T> &v, const T &a) { return upper_bound(begin(v), end(v), a) - begin(v); } constexpr long long TEN(int n) { long long ret = 1, x = 10; for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1); return ret; } template <typename T, typename U> pair<T, U> mkp(const T &t, const U &u) { return make_pair(t, u); } template <typename T> vector<T> mkrui(const vector<T> &v, bool rev = false) { vector<T> ret(v.size() + 1); if (rev) { for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1]; } else { for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i]; } return ret; }; template <typename T> vector<T> mkuni(const vector<T> &v) { vector<T> ret(v); sort(ret.begin(), ret.end()); ret.erase(unique(ret.begin(), ret.end()), ret.end()); return ret; } template <typename F> vector<int> mkord(int N, F f) { vector<int> ord(N); iota(begin(ord), end(ord), 0); sort(begin(ord), end(ord), f); return ord; } template <typename T> vector<int> mkinv(vector<T> &v) { int max_val = *max_element(begin(v), end(v)); vector<int> inv(max_val + 1, -1); for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i; return inv; } vector<int> mkiota(int n) { vector<int> ret(n); iota(begin(ret), end(ret), 0); return ret; } template <typename T> T mkrev(const T &v) { T w{v}; reverse(begin(w), end(w)); return w; } template <typename T> bool nxp(T &v) { return next_permutation(begin(v), end(v)); } // 返り値の型は入力の T に依存 // i 要素目 : [0, a[i]) template <typename T> vector<vector<T>> product(const vector<T> &a) { vector<vector<T>> ret; vector<T> v; auto dfs = [&](auto rc, int i) -> void { if (i == (int)a.size()) { ret.push_back(v); return; } for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back(); }; dfs(dfs, 0); return ret; } // F : function(void(T&)), mod を取る操作 // T : 整数型のときはオーバーフローに注意する template <typename T> T Power(T a, long long n, const T &I, const function<void(T &)> &f) { T res = I; for (; n; f(a = a * a), n >>= 1) { if (n & 1) f(res = res * a); } return res; } // T : 整数型のときはオーバーフローに注意する template <typename T> T Power(T a, long long n, const T &I = T{1}) { return Power(a, n, I, function<void(T &)>{[](T &) -> void {}}); } template <typename T> T Rev(const T &v) { T res = v; reverse(begin(res), end(res)); return res; } template <typename T> vector<T> Transpose(const vector<T> &v) { using U = typename T::value_type; if(v.empty()) return {}; int H = v.size(), W = v[0].size(); vector res(W, T(H, U{})); for (int i = 0; i < H; i++) { for (int j = 0; j < W; j++) { res[j][i] = v[i][j]; } } return res; } template <typename T> vector<T> Rotate(const vector<T> &v, int clockwise = true) { using U = typename T::value_type; int H = v.size(), W = v[0].size(); vector res(W, T(H, U{})); for (int i = 0; i < H; i++) { for (int j = 0; j < W; j++) { if (clockwise) { res[W - 1 - j][i] = v[i][j]; } else { res[j][H - 1 - i] = v[i][j]; } } } return res; } } // namespace Nyaan // bit operation namespace Nyaan { __attribute__((target("popcnt"))) inline int popcnt(const u64 &a) { return __builtin_popcountll(a); } inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; } inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; } inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; } template <typename T> inline int gbit(const T &a, int i) { return (a >> i) & 1; } template <typename T> inline void sbit(T &a, int i, bool b) { if (gbit(a, i) != b) a ^= T(1) << i; } constexpr long long PW(int n) { return 1LL << n; } constexpr long long MSK(int n) { return (1LL << n) - 1; } } // namespace Nyaan // inout namespace Nyaan { template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &p) { os << p.first << " " << p.second; return os; } template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &p) { is >> p.first >> p.second; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &v) { int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template <typename T> istream &operator>>(istream &is, vector<T> &v) { for (auto &x : v) is >> x; return is; } istream &operator>>(istream &is, __int128_t &x) { string S; is >> S; x = 0; int flag = 0; for (auto &c : S) { if (c == '-') { flag = true; continue; } x *= 10; x += c - '0'; } if (flag) x = -x; return is; } istream &operator>>(istream &is, __uint128_t &x) { string S; is >> S; x = 0; for (auto &c : S) { x *= 10; x += c - '0'; } return is; } ostream &operator<<(ostream &os, __int128_t x) { if (x == 0) return os << 0; if (x < 0) os << '-', x = -x; string S; while (x) S.push_back('0' + x % 10), x /= 10; reverse(begin(S), end(S)); return os << S; } ostream &operator<<(ostream &os, __uint128_t x) { if (x == 0) return os << 0; string S; while (x) S.push_back('0' + x % 10), x /= 10; reverse(begin(S), end(S)); return os << S; } void in() {} template <typename T, class... U> void in(T &t, U &...u) { cin >> t; in(u...); } void out() { cout << "\n"; } template <typename T, class... U, char sep = ' '> void out(const T &t, const U &...u) { cout << t; if (sizeof...(u)) cout << sep; out(u...); } struct IoSetupNya { IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetupnya; } // namespace Nyaan // debug #ifdef NyaanDebug #define trc(...) (void(0)) #else #define trc(...) (void(0)) #endif #ifdef NyaanLocal #define trc2(...) (void(0)) #else #define trc2(...) (void(0)) #endif // macro #define each(x, v) for (auto&& x : v) #define each2(x, y, v) for (auto&& [x, y] : v) #define all(v) (v).begin(), (v).end() #define rep(i, N) for (long long i = 0; i < (long long)(N); i++) #define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--) #define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++) #define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--) #define reg(i, a, b) for (long long i = (a); i < (b); i++) #define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--) #define fi first #define se second #define ini(...) \ int __VA_ARGS__; \ in(__VA_ARGS__) #define inl(...) \ long long __VA_ARGS__; \ in(__VA_ARGS__) #define ins(...) \ string __VA_ARGS__; \ in(__VA_ARGS__) #define in2(s, t) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i]); \ } #define in3(s, t, u) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i]); \ } #define in4(s, t, u, v) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i], v[i]); \ } #define die(...) \ do { \ Nyaan::out(__VA_ARGS__); \ return; \ } while (0) namespace Nyaan { void solve(); } int main() { Nyaan::solve(); } // template <typename T> struct edge { int src, to; T cost; edge(int _to, T _cost) : src(-1), to(_to), cost(_cost) {} edge(int _src, int _to, T _cost) : src(_src), to(_to), cost(_cost) {} edge &operator=(const int &x) { to = x; return *this; } operator int() const { return to; } }; template <typename T> using Edges = vector<edge<T>>; template <typename T> using WeightedGraph = vector<Edges<T>>; using UnweightedGraph = vector<vector<int>>; // Input of (Unweighted) Graph UnweightedGraph graph(int N, int M = -1, bool is_directed = false, bool is_1origin = true) { UnweightedGraph g(N); if (M == -1) M = N - 1; for (int _ = 0; _ < M; _++) { int x, y; cin >> x >> y; if (is_1origin) x--, y--; g[x].push_back(y); if (!is_directed) g[y].push_back(x); } return g; } // Input of Weighted Graph template <typename T> WeightedGraph<T> wgraph(int N, int M = -1, bool is_directed = false, bool is_1origin = true) { WeightedGraph<T> g(N); if (M == -1) M = N - 1; for (int _ = 0; _ < M; _++) { int x, y; cin >> x >> y; T c; cin >> c; if (is_1origin) x--, y--; g[x].emplace_back(x, y, c); if (!is_directed) g[y].emplace_back(y, x, c); } return g; } // Input of Edges template <typename T> Edges<T> esgraph([[maybe_unused]] int N, int M, int is_weighted = true, bool is_1origin = true) { Edges<T> es; for (int _ = 0; _ < M; _++) { int x, y; cin >> x >> y; T c; if (is_weighted) cin >> c; else c = 1; if (is_1origin) x--, y--; es.emplace_back(x, y, c); } return es; } // Input of Adjacency Matrix template <typename T> vector<vector<T>> adjgraph(int N, int M, T INF, int is_weighted = true, bool is_directed = false, bool is_1origin = true) { vector<vector<T>> d(N, vector<T>(N, INF)); for (int _ = 0; _ < M; _++) { int x, y; cin >> x >> y; T c; if (is_weighted) cin >> c; else c = 1; if (is_1origin) x--, y--; d[x][y] = c; if (!is_directed) d[y][x] = c; } return d; } /** * @brief グラフテンプレート * @docs docs/graph/graph-template.md */ template <typename G> struct DSUonTree { private: G &g; int N; vector<int> sub_sz, euler, down, up; int idx_; int root; int dfs1(int cur, int par = -1) { sub_sz[cur] = 1; if ((int)g[cur].size() >= 2 and g[cur][0] == par) { swap(g[cur][0], g[cur][1]); } for (auto &dst : g[cur]) { if (dst == par) continue; sub_sz[cur] += dfs1(dst, cur); if (sub_sz[dst] > sub_sz[g[cur][0]]) swap(dst, g[cur][0]); } return sub_sz[cur]; } void dfs2(int cur, int par = -1) { euler[idx_] = cur; down[cur] = idx_++; for (auto &dst : g[cur]) { if (dst == par) continue; dfs2(dst, cur); } up[cur] = idx_; } public: DSUonTree(G &_g,int _root = 0) : g(_g), N(_g.size()), sub_sz(_g.size()), euler(_g.size()), down(_g.size()), up(_g.size()), idx_(0), root(_root) { dfs1(root); dfs2(root); } int idx(int u) const { return down[u]; } template <typename UPDATE, typename QUERY, typename CLEAR, typename RESET> void run(UPDATE &update, QUERY &query, CLEAR &clear, RESET &reset) { auto dsu = [&](auto rc, int cur, int par = -1, bool keep = false) -> void { for (int i = 1; i < (int)g[cur].size(); i++) if (g[cur][i] != par) rc(rc, g[cur][i], cur, false); if (sub_sz[cur] != 1) rc(rc, g[cur][0], cur, true); if (sub_sz[cur] != 1) for (int i = up[g[cur][0]]; i < up[cur]; i++) update(euler[i]); update(cur); query(cur); if (!keep) { for (int i = down[cur]; i < up[cur]; i++) clear(euler[i]); reset(); } return; }; dsu(dsu, root); } }; /** * @brief DSU on Tree(Guni) * @docs docs/tree/dsu-on-tree.md */ using namespace std; template <typename T> struct has_cost { private: template <typename U> static auto confirm(U u) -> decltype(u.cost, std::true_type()); static auto confirm(...) -> std::false_type; public: enum : bool { value = decltype(confirm(std::declval<T>()))::value }; }; template <typename T> vector<vector<T>> inverse_tree(const vector<vector<T>>& g) { int N = (int)g.size(); vector<vector<T>> rg(N); for (int i = 0; i < N; i++) { for (auto& e : g[i]) { if constexpr (is_same<T, int>::value) { rg[e].push_back(i); } else if constexpr (has_cost<T>::value) { rg[e].emplace_back(e.to, i, e.cost); } else { assert(0); } } } return rg; } template <typename T> vector<vector<T>> rooted_tree(const vector<vector<T>>& g, int root = 0) { int N = (int)g.size(); vector<vector<T>> rg(N); vector<char> v(N, false); v[root] = true; queue<int> que; que.emplace(root); while (!que.empty()) { auto p = que.front(); que.pop(); for (auto& e : g[p]) { if (v[e] == false) { v[e] = true; que.push(e); rg[p].push_back(e); } } } return rg; } /** * @brief 根付き木・逆辺からなる木への変換 */ template <typename G> struct HeavyLightDecomposition { private: void dfs_sz(int cur) { size[cur] = 1; for (auto& dst : g[cur]) { if (dst == par[cur]) { if (g[cur].size() >= 2 && int(dst) == int(g[cur][0])) swap(g[cur][0], g[cur][1]); else continue; } depth[dst] = depth[cur] + 1; par[dst] = cur; dfs_sz(dst); size[cur] += size[dst]; if (size[dst] > size[g[cur][0]]) { swap(dst, g[cur][0]); } } } void dfs_hld(int cur) { down[cur] = id++; for (auto dst : g[cur]) { if (dst == par[cur]) continue; nxt[dst] = (int(dst) == int(g[cur][0]) ? nxt[cur] : int(dst)); dfs_hld(dst); } up[cur] = id; } // [u, v) vector<pair<int, int>> ascend(int u, int v) const { vector<pair<int, int>> res; while (nxt[u] != nxt[v]) { res.emplace_back(down[u], down[nxt[u]]); u = par[nxt[u]]; } if (u != v) res.emplace_back(down[u], down[v] + 1); return res; } // (u, v] vector<pair<int, int>> descend(int u, int v) const { if (u == v) return {}; if (nxt[u] == nxt[v]) return {{down[u] + 1, down[v]}}; auto res = descend(u, par[nxt[v]]); res.emplace_back(down[nxt[v]], down[v]); return res; } public: G& g; int root, id; vector<int> size, depth, down, up, nxt, par; HeavyLightDecomposition(G& _g, int _root = 0) : g(_g), root(_root), id(0), size(g.size(), 0), depth(g.size(), 0), down(g.size(), -1), up(g.size(), -1), nxt(g.size(), root), par(g.size(), root) { dfs_sz(root); dfs_hld(root); } pair<int, int> idx(int i) const { return make_pair(down[i], up[i]); } template <typename F> void path_query(int u, int v, bool vertex, const F& f) { int l = lca(u, v); for (auto&& [a, b] : ascend(u, l)) { int s = a + 1, t = b; s > t ? f(t, s) : f(s, t); } if (vertex) f(down[l], down[l] + 1); for (auto&& [a, b] : descend(l, v)) { int s = a, t = b + 1; s > t ? f(t, s) : f(s, t); } } template <typename F> void path_noncommutative_query(int u, int v, bool vertex, const F& f) { int l = lca(u, v); for (auto&& [a, b] : ascend(u, l)) f(a + 1, b); if (vertex) f(down[l], down[l] + 1); for (auto&& [a, b] : descend(l, v)) f(a, b + 1); } template <typename F> void subtree_query(int u, bool vertex, const F& f) { f(down[u] + int(!vertex), up[u]); } int lca(int a, int b) { while (nxt[a] != nxt[b]) { if (down[a] < down[b]) swap(a, b); a = par[nxt[a]]; } return depth[a] < depth[b] ? a : b; } int dist(int a, int b) { return depth[a] + depth[b] - depth[lca(a, b)] * 2; } }; /** * @brief Heavy Light Decomposition(重軽分解) * @docs docs/tree/heavy-light-decomposition.md */ namespace StaticTopTreeImpl { enum Type { Edge, Compress, Rake }; template <typename G> struct StaticTopTree { const HeavyLightDecomposition<G>& hld; G g; int root; // 元の木の root int tt_root; // top tree の root vector<int> P, L, R; vector<Type> T; StaticTopTree(const HeavyLightDecomposition<G>& _hld) : hld(_hld) { root = hld.root; g = rooted_tree(hld.g, root); int n = g.size(); P.resize(n, -1), L.resize(n, -1), R.resize(n, -1); T.resize(n, Type::Edge); build(); } private: int add(int l, int r, Type t) { if (t == Type::Compress or t == Type::Rake) { assert(l != -1 and r != -1); } assert(t != Type::Edge); int k = P.size(); P.push_back(-1), L.push_back(l), R.push_back(r), T.push_back(t); if (l != -1) P[l] = k; if (r != -1) P[r] = k; return k; } pair<int, int> merge(const vector<pair<int, int>>& a, Type t) { assert(!a.empty()); if (a.size() == 1) return a[0]; int sum_s = 0; for (auto& [_, s] : a) sum_s += s; vector<pair<int, int>> b, c; for (auto& [i, s] : a) { (sum_s > s ? b : c).emplace_back(i, s); sum_s -= s * 2; } auto [i, si] = merge(b, t); auto [j, sj] = merge(c, t); return {add(i, j, t), si + sj}; } pair<int, int> compress(int i) { vector<pair<int, int>> chs{{i, 1}}; while (!g[i].empty()) { chs.push_back(rake(i)); i = g[i][0]; } return merge(chs, Type::Compress); } pair<int, int> rake(int i) { vector<pair<int, int>> chs{{g[i][0], 1}}; for (int j = 1; j < (int)g[i].size(); j++) chs.push_back(compress(g[i][j])); return merge(chs, Type::Rake); } void build() { auto [i, n] = compress(root); assert((int)g.size() == n); assert((int)P.size() == n * 2 - 1); tt_root = i; } }; template <typename G, typename Data, typename Edge, typename Compress, typename Rake> struct DPonStaticTopTree { const StaticTopTree<G> tt; vector<Data> dat; const Edge edge; const Compress compress; const Rake rake; DPonStaticTopTree(const HeavyLightDecomposition<G>& hld, const Edge& _edge, const Compress& _compress, const Rake& _rake) : tt(hld), edge(_edge), compress(_compress), rake(_rake) { int n = tt.P.size(); dat.resize(n); dfs(tt.tt_root); } Data get() { return dat[tt.tt_root]; } void update(int k) { while (k != -1) _update(k), k = tt.P[k]; } private: void _update(int k) { if (tt.T[k] == Type::Edge) { dat[k] = edge(k); } else if (tt.T[k] == Type::Compress) { dat[k] = compress(dat[tt.L[k]], dat[tt.R[k]]); } else if (tt.T[k] == Type::Rake) { dat[k] = rake(dat[tt.L[k]], dat[tt.R[k]]); } } void dfs(int k) { if (tt.L[k] != -1) dfs(tt.L[k]); if (tt.R[k] != -1) dfs(tt.R[k]); _update(k); } }; } // namespace StaticTopTreeImpl using StaticTopTreeImpl::DPonStaticTopTree; using StaticTopTreeImpl::StaticTopTree; /* // template using Data = ; auto edge = [&](int i) -> Data { }; auto compress = [&](const Data& p, const Data& c) -> Data { }; auto rake = [&](const Data& p, const Data& c) -> Data { }; HeavyLightDecomposition hld{g}; DPonStaticTopTree<vector<vector<int>>, Data, decltype(edge), decltype(compress), decltype(rake)> dp(hld, edge, compress, rake); */ using namespace Nyaan; struct Data { u64 bnum, blw, bhi; u64 wnum, wlw, whi; u64 ans; u64 dia; }; void q() { ini(N); auto gA = graph(N); auto gB = graph(N); vi col(N); // template auto edge = [&](int i) -> Data { if (col[i] == 0) return {1, 0, 1, 0, 0, 0, 0, 1}; return {0, 0, 0, 1, 0, 1, 0, 1}; }; auto compress = [&](const Data& p, const Data& c) -> Data { Data dat; dat.bnum = p.bnum + c.bnum; dat.blw = p.blw + c.blw + p.bnum * c.dia; dat.bhi = p.bhi + c.bhi + c.bnum * p.dia; dat.wnum = p.wnum + c.wnum; dat.wlw = p.wlw + c.wlw + p.wnum * c.dia; dat.whi = p.whi + c.whi + c.wnum * p.dia; dat.ans = p.ans + c.ans + c.bhi * p.wnum + c.whi * p.bnum + p.blw * c.wnum + p.wlw * c.bnum; dat.dia = p.dia + c.dia; return dat; }; auto rake = [&](const Data& p, const Data& c) -> Data { Data dat; dat.bnum = p.bnum + c.bnum; dat.blw = p.blw + c.bhi + c.bnum * p.dia; dat.bhi = p.bhi + c.bhi; dat.wnum = p.wnum + c.wnum; dat.wlw = p.wlw + c.whi + c.wnum * p.dia; dat.whi = p.whi + c.whi; dat.ans = p.ans + c.ans + c.bhi * p.wnum + c.whi * p.bnum + p.bhi * c.wnum + p.whi * c.bnum; dat.dia = p.dia; return dat; }; HeavyLightDecomposition hld{gB}; DPonStaticTopTree<vector<vector<int>>, Data, decltype(edge), decltype(compress), decltype(rake)> dp(hld, edge, compress, rake); u64 ans = 0; // reflect data of node i auto update = [&](int i) { trc("flip", i); col[i] ^= 1; dp.update(i); }; // answer queries of subtree i auto query = [&](int cur) { auto dat = dp.get(); trc(cur); trc(dat.bnum, dat.bhi, dat.blw); trc(dat.wnum, dat.whi, dat.wlw); trc(dat.ans, dat.dia); ans += dat.ans; }; // below two function are called if all data must be deleted // delete data of node i (if necesarry) auto clear = [&](int i) { trc("flip", i); col[i] ^= 1; dp.update(i); }; // delete data related to all (if necesarry) auto reset = [&]() {}; DSUonTree<decltype(gA)> dsu(gA, 0); dsu.run(update, query, clear, reset); out(ans * 2); } void Nyaan::solve() { int t = 1; // in(t); while (t--) q(); }